# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest from caffe2.python import workspace, brew, model_helper from caffe2.python.modeling.gradient_clipping import GradientClipping import numpy as np class GradientClippingTest(unittest.TestCase): def test_gradient_clipping_by_norm(self): model = model_helper.ModelHelper(name="test") data = model.net.AddExternalInput("data") fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) # no operator name set, will use default fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) sigm = model.net.Sigmoid(fc2, 'sigm') sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') loss = model.net.SumElements(sq, 'loss') grad_map = model.AddGradientOperators([loss]) grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} net_modifier = GradientClipping( grad_clip_method='by_norm', clip_norm_type='l2_norm', clip_threshold=0.1, ) net_modifier(model.net, grad_map=grad_map_for_param) workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) # 5 forward ops + 6 backward ops + 2 * (3 gradient clipping ops) self.assertEqual(len(model.net.Proto().op), 17) def test_gradient_clipping_by_norm_l1_norm(self): model = model_helper.ModelHelper(name="test") data = model.net.AddExternalInput("data") fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) # no operator name set, will use default fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) sigm = model.net.Sigmoid(fc2, 'sigm') sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') loss = model.net.SumElements(sq, 'loss') grad_map = model.AddGradientOperators([loss]) grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} net_modifier = GradientClipping( grad_clip_method='by_norm', clip_norm_type='l1_norm', clip_threshold=0.1, ) net_modifier(model.net, grad_map=grad_map_for_param) workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) # 5 forward ops + 6 backward ops + 2 * (2 gradient clipping ops) self.assertEqual(len(model.net.Proto().op), 15) def test_gradient_clipping_by_norm_using_param_norm(self): model = model_helper.ModelHelper(name="test") data = model.net.AddExternalInput("data") fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) # no operator name set, will use default fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) sigm = model.net.Sigmoid(fc2, 'sigm') sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') loss = model.net.SumElements(sq, 'loss') grad_map = model.AddGradientOperators([loss]) grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} net_modifier = GradientClipping( grad_clip_method='by_norm', clip_norm_type='l2_norm', clip_threshold=0.1, use_parameter_norm=True, ) net_modifier(model.net, grad_map=grad_map_for_param) workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) # 5 forward ops + 6 backward ops + 2 * (5 gradient clipping ops) self.assertEqual(len(model.net.Proto().op), 21) def test_gradient_clipping_by_norm_compute_norm_ratio(self): model = model_helper.ModelHelper(name="test") data = model.net.AddExternalInput("data") fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) # no operator name set, will use default fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) sigm = model.net.Sigmoid(fc2, 'sigm') sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') loss = model.net.SumElements(sq, 'loss') grad_map = model.AddGradientOperators([loss]) grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} net_modifier = GradientClipping( grad_clip_method='by_norm', clip_norm_type='l2_norm', clip_threshold=0.1, use_parameter_norm=True, compute_norm_ratio=True, ) net_modifier(model.net, grad_map=grad_map_for_param) workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) # 5 forward ops + 6 backward ops + 2 * (6 gradient clipping ops) self.assertEqual(len(model.net.Proto().op), 23) def test_gradient_clipping_by_value(self): model = model_helper.ModelHelper(name="test") data = model.net.AddExternalInput("data") fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) # no operator name set, will use default fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) sigm = model.net.Sigmoid(fc2, 'sigm') sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') loss = model.net.SumElements(sq, 'loss') grad_map = model.AddGradientOperators([loss]) grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} clip_max = 1e-8 clip_min = 0 net_modifier = GradientClipping( grad_clip_method='by_value', clip_max=clip_max, clip_min=clip_min, ) net_modifier(model.net, grad_map=grad_map_for_param) workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) # 5 forward ops + 6 backward ops + 2 * (1 gradient clipping ops) self.assertEqual(len(model.net.Proto().op), 13) fc1_w_grad = workspace.FetchBlob('fc1_w_grad') self.assertLessEqual(np.amax(fc1_w_grad), clip_max) self.assertGreaterEqual(np.amin(fc1_w_grad), clip_min) def test_gradient_clipping_by_norm_including_blobs(self): model = model_helper.ModelHelper(name="test") data = model.net.AddExternalInput("data") fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) # no operator name set, will use default fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) sigm = model.net.Sigmoid(fc2, 'sigm') sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') loss = model.net.SumElements(sq, 'loss') grad_map = model.AddGradientOperators([loss]) grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} net_modifier = GradientClipping( grad_clip_method='by_norm', clip_norm_type='l2_norm', clip_threshold=0.1, blobs_to_include=['fc1_w'], blobs_to_exclude=None ) net_modifier(model.net, grad_map=grad_map_for_param) workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) # 5 forward ops + 6 backward ops + 1 * (3 gradient clipping ops) self.assertEqual(len(model.net.Proto().op), 14) def test_gradient_clipping_by_norm_excluding_blobs(self): model = model_helper.ModelHelper(name="test") data = model.net.AddExternalInput("data") fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) # no operator name set, will use default fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) sigm = model.net.Sigmoid(fc2, 'sigm') sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') loss = model.net.SumElements(sq, 'loss') grad_map = model.AddGradientOperators([loss]) grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} net_modifier = GradientClipping( grad_clip_method='by_norm', clip_norm_type='l2_norm', clip_threshold=0.1, blobs_to_include=None, blobs_to_exclude=['fc1_w', 'fc2_w'] ) net_modifier(model.net, grad_map=grad_map_for_param) workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) # 5 forward ops + 6 backward ops + 0 * (3 gradient clipping ops) self.assertEqual(len(model.net.Proto().op), 11)