"""Adds docstrings to Tensor functions""" import torch._C from torch._C import _add_docstr as add_docstr def add_docstr_all(method, docstr): add_docstr(getattr(torch._C._TensorBase, method), docstr) add_docstr_all('abs', r""" abs() -> Tensor See :func:`torch.abs` """) add_docstr_all('abs_', r""" abs_() -> Tensor In-place version of :meth:`~Tensor.abs` """) add_docstr_all('acos', r""" acos() -> Tensor See :func:`torch.acos` """) add_docstr_all('acos_', r""" acos_() -> Tensor In-place version of :meth:`~Tensor.acos` """) add_docstr_all('add', r""" add(value) -> Tensor See :func:`torch.add` """) add_docstr_all('add_', r""" add_(value) -> Tensor In-place version of :meth:`~Tensor.add` """) add_docstr_all('addbmm', r""" addbmm(beta=1, mat, alpha=1, batch1, batch2) -> Tensor See :func:`torch.addbmm` """) add_docstr_all('addbmm_', r""" addbmm_(beta=1, mat, alpha=1, batch1, batch2) -> Tensor In-place version of :meth:`~Tensor.addbmm` """) add_docstr_all('addcdiv', r""" addcdiv(value=1, tensor1, tensor2) -> Tensor See :func:`torch.addcdiv` """) add_docstr_all('addcdiv_', r""" addcdiv_(value=1, tensor1, tensor2) -> Tensor In-place version of :meth:`~Tensor.addcdiv` """) add_docstr_all('addcmul', r""" addcmul(value=1, tensor1, tensor2) -> Tensor See :func:`torch.addcmul` """) add_docstr_all('addcmul_', r""" addcmul_(value=1, tensor1, tensor2) -> Tensor In-place version of :meth:`~Tensor.addcmul` """) add_docstr_all('addmm', r""" addmm(beta=1, mat, alpha=1, mat1, mat2) -> Tensor See :func:`torch.addmm` """) add_docstr_all('addmm_', r""" addmm_(beta=1, mat, alpha=1, mat1, mat2) -> Tensor In-place version of :meth:`~Tensor.addmm` """) add_docstr_all('addmv', r""" addmv(beta=1, tensor, alpha=1, mat, vec) -> Tensor See :func:`torch.addmv` """) add_docstr_all('addmv_', r""" addmv_(beta=1, tensor, alpha=1, mat, vec) -> Tensor In-place version of :meth:`~Tensor.addmv` """) add_docstr_all('addr', r""" addr(beta=1, alpha=1, vec1, vec2) -> Tensor See :func:`torch.addr` """) add_docstr_all('addr_', r""" addr_(beta=1, alpha=1, vec1, vec2) -> Tensor In-place version of :meth:`~Tensor.addr` """) add_docstr_all('all', r""" all() -> bool Returns ``True`` if all elements in the tensor are non-zero, ``False`` otherwise. """) add_docstr_all('any', r""" any() -> bool Returns ``True`` if any elements in the tensor are non-zero, ``False`` otherwise. """) add_docstr_all('apply_', r""" apply_(callable) -> Tensor Applies the function :attr:`callable` to each element in the tensor, replacing each element with the value returned by :attr:`callable`. .. note:: This function only works with CPU tensors and should not be used in code sections that require high performance. """) add_docstr_all('asin', r""" asin() -> Tensor See :func:`torch.asin` """) add_docstr_all('asin_', r""" asin_() -> Tensor In-place version of :meth:`~Tensor.asin` """) add_docstr_all('atan', r""" atan() -> Tensor See :func:`torch.atan` """) add_docstr_all('atan2', r""" atan2(other) -> Tensor See :func:`torch.atan2` """) add_docstr_all('atan2_', r""" atan2_(other) -> Tensor In-place version of :meth:`~Tensor.atan2` """) add_docstr_all('atan_', r""" atan_() -> Tensor In-place version of :meth:`~Tensor.atan` """) add_docstr_all('baddbmm', r""" baddbmm(beta=1, alpha=1, batch1, batch2) -> Tensor See :func:`torch.baddbmm` """) add_docstr_all('baddbmm_', r""" baddbmm_(beta=1, alpha=1, batch1, batch2) -> Tensor In-place version of :meth:`~Tensor.baddbmm` """) add_docstr_all('bernoulli', r""" bernoulli() -> Tensor See :func:`torch.bernoulli` """) add_docstr_all('bernoulli_', r""" bernoulli_() -> Tensor In-place version of :meth:`~Tensor.bernoulli` """) add_docstr_all('bmm', r""" bmm(batch2) -> Tensor See :func:`torch.bmm` """) add_docstr_all('btrifact_with_info', r""" btrifact_with_info(pivot=True) -> (Tensor, Tensor, Tensor) See :func:`torch.btrifact_with_info` """) add_docstr_all('cauchy_', r""" cauchy_(median=0, sigma=1, *, generator=None) -> Tensor Fills the tensor with numbers drawn from the Cauchy distribution: .. math:: f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - median)^2 + \sigma^2} """) add_docstr_all('ceil', r""" ceil() -> Tensor See :func:`torch.ceil` """) add_docstr_all('ceil_', r""" ceil_() -> Tensor In-place version of :meth:`~Tensor.ceil` """) add_docstr_all('clamp', r""" clamp(min, max) -> Tensor See :func:`torch.clamp` """) add_docstr_all('clamp_', r""" clamp_(min, max) -> Tensor In-place version of :meth:`~Tensor.clamp` """) add_docstr_all('clone', r""" clone() -> Tensor Returns a copy of the :attr:`self` tensor. The copy has the same size and data type as :attr:`self`. """) add_docstr_all('contiguous', r""" contiguous() -> Tensor Returns a contiguous tensor containing the same data as :attr:`self` tensor. If :attr:`self` tensor is contiguous, this function returns the :attr:`self` tensor. """) add_docstr_all('copy_', r""" copy_(src, non_blocking=False) -> Tensor Copies the elements from :attr:`src` into :attr:`self` tensor and returns :attr:`self`. The :attr:`src` tensor must be :ref:`broadcastable ` with the :attr:`self` tensor. It may be of a different data type or reside on a different device. Args: src (Tensor): the source tensor to copy from non_blocking (bool): if ``True`` and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. """) add_docstr_all('cos', r""" cos() -> Tensor See :func:`torch.cos` """) add_docstr_all('cos_', r""" cos_() -> Tensor In-place version of :meth:`~Tensor.cos` """) add_docstr_all('cosh', r""" cosh() -> Tensor See :func:`torch.cosh` """) add_docstr_all('cosh_', r""" cosh_() -> Tensor In-place version of :meth:`~Tensor.cosh` """) add_docstr_all('cross', r""" cross(other, dim=-1) -> Tensor See :func:`torch.cross` """) add_docstr_all('cuda', r""" cuda(device=None, non_blocking=False) -> Tensor Returns a copy of this object in CUDA memory. If this object is already in CUDA memory and on the correct device, then no copy is performed and the original object is returned. Args: device (:class:`torch.device`): The destination GPU device. Defaults to the current CUDA device. non_blocking (bool): If ``True`` and the source is in pinned memory, the copy will be asynchronous with respect to the host. Otherwise, the argument has no effect. Default: ``False``. """) add_docstr_all('cumprod', r""" cumprod(dim) -> Tensor See :func:`torch.cumprod` """) add_docstr_all('cumsum', r""" cumsum(dim) -> Tensor See :func:`torch.cumsum` """) add_docstr_all('data_ptr', r""" data_ptr() -> int Returns the address of the first element of :attr:`self` tensor. """) add_docstr_all('diag', r""" diag(diagonal=0) -> Tensor See :func:`torch.diag` """) add_docstr_all('dim', r""" dim() -> int Returns the number of dimensions of :attr:`self` tensor. """) add_docstr_all('dist', r""" dist(other, p=2) -> Tensor See :func:`torch.dist` """) add_docstr_all('div', r""" div(value) -> Tensor See :func:`torch.div` """) add_docstr_all('div_', r""" div_(value) -> Tensor In-place version of :meth:`~Tensor.div` """) add_docstr_all('dot', r""" dot(tensor2) -> Tensor See :func:`torch.dot` """) add_docstr_all('eig', r""" eig(eigenvectors=False) -> (Tensor, Tensor) See :func:`torch.eig` """) add_docstr_all('element_size', r""" element_size() -> int Returns the size in bytes of an individual element. Example:: >>> torch.FloatTensor().element_size() 4 >>> torch.ByteTensor().element_size() 1 """) add_docstr_all('eq', r""" eq(other) -> Tensor See :func:`torch.eq` """) add_docstr_all('eq_', r""" eq_(other) -> Tensor In-place version of :meth:`~Tensor.eq` """) add_docstr_all('equal', r""" equal(other) -> bool See :func:`torch.equal` """) add_docstr_all('erf', r""" erf() -> Tensor See :func:`torch.erf` """) add_docstr_all('erfinv', r""" erfinv() -> Tensor See :func:`torch.erfinv` """) add_docstr_all('exp', r""" exp() -> Tensor See :func:`torch.exp` """) add_docstr_all('exp_', r""" exp_() -> Tensor In-place version of :meth:`~Tensor.exp` """) add_docstr_all('expm1', r""" expm1() -> Tensor See :func:`torch.expm1` """) add_docstr_all('expm1_', r""" expm1_() -> Tensor In-place version of :meth:`~Tensor.expm1` """) add_docstr_all('exponential_', r""" exponential_(lambd=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements drawn from the exponential distribution: .. math:: f(x) = \lambda e^{-\lambda x} """) add_docstr_all('fill_', r""" fill_(value) -> Tensor Fills :attr:`self` tensor with the specified value. """) add_docstr_all('floor', r""" floor() -> Tensor See :func:`torch.floor` """) add_docstr_all('floor_', r""" floor_() -> Tensor In-place version of :meth:`~Tensor.floor` """) add_docstr_all('fmod', r""" fmod(divisor) -> Tensor See :func:`torch.fmod` """) add_docstr_all('fmod_', r""" fmod_(divisor) -> Tensor In-place version of :meth:`~Tensor.fmod` """) add_docstr_all('frac', r""" frac() -> Tensor See :func:`torch.frac` """) add_docstr_all('frac_', r""" frac_() -> Tensor In-place version of :meth:`~Tensor.frac` """) add_docstr_all('gather', r""" gather(dim, index) -> Tensor See :func:`torch.gather` """) add_docstr_all('ge', r""" ge(other) -> Tensor See :func:`torch.ge` """) add_docstr_all('ge_', r""" ge_(other) -> Tensor In-place version of :meth:`~Tensor.ge` """) add_docstr_all('gels', r""" gels(A) -> Tensor See :func:`torch.gels` """) add_docstr_all('geometric_', r""" geometric_(p, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements drawn from the geometric distribution: .. math:: f(X=k) = (1 - p)^{k - 1} p """) add_docstr_all('geqrf', r""" geqrf() -> (Tensor, Tensor) See :func:`torch.geqrf` """) add_docstr_all('ger', r""" ger(vec2) -> Tensor See :func:`torch.ger` """) add_docstr_all('gesv', r""" gesv(A) -> Tensor, Tensor See :func:`torch.gesv` """) add_docstr_all('gt', r""" gt(other) -> Tensor See :func:`torch.gt` """) add_docstr_all('gt_', r""" gt_(other) -> Tensor In-place version of :meth:`~Tensor.gt` """) add_docstr_all('histc', r""" histc(bins=100, min=0, max=0) -> Tensor See :func:`torch.histc` """) add_docstr_all('index', r""" index(m) -> Tensor Selects elements from :attr:`self` tensor using a binary mask or along a given dimension. The expression ``tensor.index(m)`` is equivalent to ``tensor[m]``. Args: m (int or ByteTensor or slice): the dimension or mask used to select elements """) add_docstr_all('index_add_', r""" index_add_(dim, index, tensor) -> Tensor Accumulate the elements of :attr:`tensor` into the :attr:`self` tensor by adding to the indices in the order given in :attr:`index`. For example, if ``dim == 0`` and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is added to the ``j``\ th row of :attr:`self`. The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`tensor` to select from tensor (Tensor): the tensor containing values to add Example:: >>> x = torch.Tensor(5, 3).fill_(1) >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> index = torch.LongTensor([0, 4, 2]) >>> x.index_add_(0, index, t) >>> x 2 3 4 1 1 1 8 9 10 1 1 1 5 6 7 [torch.FloatTensor of size (5,3)] """) add_docstr_all('index_copy_', r""" index_copy_(dim, index, tensor) -> Tensor Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting the indices in the order given in :attr:`index`. For example, if ``dim == 0`` and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the ``j``\ th row of :attr:`self`. The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`tensor` to select from tensor (Tensor): the tensor containing values to copy Example:: >>> x = torch.zeros(5, 3) >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> index = torch.LongTensor([0, 4, 2]) >>> x.index_copy_(0, index, t) >>> x 1 2 3 0 0 0 7 8 9 0 0 0 4 5 6 [torch.FloatTensor of size (5,3)] """) add_docstr_all('index_fill_', r""" index_fill_(dim, index, val) -> Tensor Fills the elements of the :attr:`self` tensor with value :attr:`val` by selecting the indices in the order given in :attr:`index`. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`self` tensor to fill in val (float): the value to fill with Example:: >>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> index = torch.LongTensor([0, 2]) >>> x.index_fill_(1, index, -1) >>> x -1 2 -1 -1 5 -1 -1 8 -1 [torch.FloatTensor of size (3,3)] """) add_docstr_all('index_put_', r""" index_put_(indices, value) -> Tensor Puts values from the tensor :attr:`value` into the tensor :attr:`self` using the indices specified in :attr:`indices` (which is a tuple of Tensors). The expression ``tensor.index_put_(indices, value)`` is equivalent to ``tensor[indices] = value``. Returns :attr:`self`. Args: indices (tuple of LongTensor): tensors used to index into `self`. value (Tensor): tensor of same dtype as `self`. """) add_docstr_all('index_select', r""" index_select(dim, index) -> Tensor See :func:`torch.index_select` """) add_docstr_all('inverse', r""" inverse() -> Tensor See :func:`torch.inverse` """) add_docstr_all('is_contiguous', r""" is_contiguous() -> bool Returns True if :attr:`self` tensor is contiguous in memory in C order. """) add_docstr_all('is_set_to', r""" is_set_to(tensor) -> bool Returns True if this object refers to the same ``THTensor`` object from the Torch C API as the given tensor. """) add_docstr_all('item', r""" item() -> number Returns the value of this tensor as a standard Python number. This only works for tensors with one element. This operation is not differentiable. Example:: >>> x = torch.Tensor([1.0]) >>> x.item() 1.0 """) add_docstr_all('kthvalue', r""" kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.kthvalue` """) add_docstr_all('le', r""" le(other) -> Tensor See :func:`torch.le` """) add_docstr_all('le_', r""" le_(other) -> Tensor In-place version of :meth:`~Tensor.le` """) add_docstr_all('lerp', r""" lerp(start, end, weight) -> Tensor See :func:`torch.lerp` """) add_docstr_all('lerp_', r""" lerp_(start, end, weight) -> Tensor In-place version of :meth:`~Tensor.lerp` """) add_docstr_all('log', r""" log() -> Tensor See :func:`torch.log` """) add_docstr_all('log_', r""" log_() -> Tensor In-place version of :meth:`~Tensor.log` """) add_docstr_all('log10', r""" log10() -> Tensor See :func:`torch.log10` """) add_docstr_all('log10_', r""" log10_() -> Tensor In-place version of :meth:`~Tensor.log10` """) add_docstr_all('log1p', r""" log1p() -> Tensor See :func:`torch.log1p` """) add_docstr_all('log1p_', r""" log1p_() -> Tensor In-place version of :meth:`~Tensor.log1p` """) add_docstr_all('log2', r""" log2() -> Tensor See :func:`torch.log2` """) add_docstr_all('log2_', r""" log2_() -> Tensor In-place version of :meth:`~Tensor.log2` """) add_docstr_all('log_normal_', u""" log_normal_(mean=1, std=2, *, generator=None) Fills :attr:`self` tensor with numbers samples from the log-normal distribution parameterized by the given mean (\u00B5) and standard deviation (\u03C3). Note that :attr:`mean` and :attr:`stdv` are the mean and standard deviation of the underlying normal distribution, and not of the returned distribution: .. math:: f(x) = \\dfrac{1}{x \\sigma \\sqrt{2\\pi}}\ e^{-\\dfrac{(\\ln x - \\mu)^2}{2\\sigma^2}} """) add_docstr_all('lt', r""" lt(other) -> Tensor See :func:`torch.lt` """) add_docstr_all('lt_', r""" lt_(other) -> Tensor In-place version of :meth:`~Tensor.lt` """) add_docstr_all('map_', r""" map_(tensor, callable) Applies :attr:`callable` for each element in :attr:`self` tensor and the given :attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and the given :attr:`tensor` must be :ref:`broadcastable `. The :attr:`callable` should have the signature:: def callable(a, b) -> number """) add_docstr_all('masked_scatter_', r""" masked_scatter_(mask, source) Copies elements from :attr:`source` into :attr:`self` tensor at positions where the :attr:`mask` is one. The shape of :attr:`mask` must be :ref:`broadcastable ` with the shape of the underlying tensor. The :attr:`source` should have at least as many elements as the number of ones in :attr:`mask` Args: mask (ByteTensor): the binary mask source (Tensor): the tensor to copy from .. note:: The :attr:`mask` operates on the :attr:`self` tensor, not on the given :attr:`source` tensor. """) add_docstr_all('masked_fill_', r""" masked_fill_(mask, value) Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is one. The shape of :attr:`mask` must be :ref:`broadcastable ` with the shape of the underlying tensor. Args: mask (ByteTensor): the binary mask value (float): the value to fill in with """) add_docstr_all('masked_select', r""" masked_select(mask) -> Tensor See :func:`torch.masked_select` """) add_docstr_all('max', r""" max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.max` """) add_docstr_all('mean', r""" mean(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.mean` """) add_docstr_all('median', r""" median(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.median` """) add_docstr_all('min', r""" min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.min` """) add_docstr_all('mm', r""" mm(mat2) -> Tensor See :func:`torch.mm` """) add_docstr_all('mode', r""" mode(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.mode` """) add_docstr_all('mul', r""" mul(value) -> Tensor See :func:`torch.mul` """) add_docstr_all('mul_', r""" mul_(value) In-place version of :meth:`~Tensor.mul` """) add_docstr_all('multinomial', r""" multinomial(num_samples, replacement=False, *, generator=None) -> Tensor See :func:`torch.multinomial` """) add_docstr_all('mv', r""" mv(vec) -> Tensor See :func:`torch.mv` """) add_docstr_all('narrow', r""" narrow(dimension, start, length) -> Tensor Returns a new tensor that is a narrowed version of :attr:`self` tensor. The dimension :attr:`dim` is narrowed from :attr:`start` to :attr:`start + length`. The returned tensor and :attr:`self` tensor share the same underlying storage. Args: dimension (int): the dimension along which to narrow start (int): the starting dimension length (int): the distance to the ending dimension Example:: >>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> x.narrow(0, 0, 2) 1 2 3 4 5 6 [torch.FloatTensor of size (2,3)] >>> x.narrow(1, 1, 2) 2 3 5 6 8 9 [torch.FloatTensor of size (3,2)] """) add_docstr_all('ndimension', r""" ndimension() -> int Alias for :meth:`~Tensor.dim()` """) add_docstr_all('ne', r""" ne(other) -> Tensor See :func:`torch.ne` """) add_docstr_all('ne_', r""" ne_(other) -> Tensor In-place version of :meth:`~Tensor.ne` """) add_docstr_all('neg', r""" neg() -> Tensor See :func:`torch.neg` """) add_docstr_all('neg_', r""" neg_() -> Tensor In-place version of :meth:`~Tensor.neg` """) add_docstr_all('nelement', r""" nelement() -> int Alias for :meth:`~Tensor.numel` """) add_docstr_all('nonzero', r""" nonzero() -> LongTensor See :func:`torch.nonzero` """) add_docstr_all('norm', r""" norm(p=2, dim=None, keepdim=False) -> Tensor See :func:`torch.norm` """) add_docstr_all('normal_', r""" normal_(mean=0, std=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements samples from the normal distribution parameterized by :attr:`mean` and :attr:`std`. """) add_docstr_all('numel', r""" numel() -> int See :func:`torch.numel` """) add_docstr_all('numpy', r""" numpy() -> numpy.ndarray Returns :attr:`self` tensor as a NumPy :class:`ndarray`. This tensor and the returned :class:`ndarray` share the same underlying storage. Changes to :attr:`self` tensor will be reflected in the :class:`ndarray` and vice versa. """) add_docstr_all('orgqr', r""" orgqr(input2) -> Tensor See :func:`torch.orgqr` """) add_docstr_all('ormqr', r""" ormqr(input2, input3, left=True, transpose=False) -> Tensor See :func:`torch.ormqr` """) add_docstr_all('potrf', r""" potrf(upper=True) -> Tensor See :func:`torch.potrf` """) add_docstr_all('potri', r""" potri(upper=True) -> Tensor See :func:`torch.potri` """) add_docstr_all('potrs', r""" potrs(input2, upper=True) -> Tensor See :func:`torch.potrs` """) add_docstr_all('pow', r""" pow(exponent) -> Tensor See :func:`torch.pow` """) add_docstr_all('pow_', r""" pow_(exponent) -> Tensor In-place version of :meth:`~Tensor.pow` """) add_docstr_all('prod', r""" prod(dim=None, keepdim=False) -> Tensor See :func:`torch.prod` """) add_docstr_all('pstrf', r""" pstrf(upper=True, tol=-1) -> (Tensor, IntTensor) See :func:`torch.pstrf` """) add_docstr_all('put_', r""" put_(indices, tensor, accumulate=False) -> Tensor Copies the elements from :attr:`tensor` into the positions specified by indices. For the purpose of indexing, the :attr:`self` tensor is treated as if it were a 1-D tensor. If :attr:`accumulate` is ``True``, the elements in :attr:`tensor` are added to :attr:`self`. If accumulate is ``False``, the behavior is undefined if indices contain duplicate elements. Args: indices (LongTensor): the indices into self tensor (Tensor): the tensor containing values to copy from accumulate (bool): whether to accumulate into self Example:: >>> src = torch.Tensor([[4, 3, 5], [6, 7, 8]]) >>> src.put_(torch.LongTensor([1, 3]), torch.Tensor([9, 10])) 4 9 5 10 7 8 [torch.FloatTensor of size (2,3)] """) add_docstr_all('qr', r""" qr() -> (Tensor, Tensor) See :func:`torch.qr` """) add_docstr_all('random_', r""" random_(from=0, to=None, *, generator=None) -> Tensor Fills :attr:`self` tensor with numbers sampled from the discrete uniform distribution over ``[from, to - 1]``. If not specified, the values are usually only bounded by :attr:`self` tensor's data type. However, for floating point types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every value is representable. For example, `torch.DoubleTensor(1).random_()` will be uniform in ``[0, 2^53]``. """) add_docstr_all('reciprocal', r""" reciprocal() -> Tensor See :func:`torch.reciprocal` """) add_docstr_all('reciprocal_', r""" reciprocal_() -> Tensor In-place version of :meth:`~Tensor.reciprocal` """) add_docstr_all('remainder', r""" remainder(divisor) -> Tensor See :func:`torch.remainder` """) add_docstr_all('remainder_', r""" remainder_(divisor) -> Tensor In-place version of :meth:`~Tensor.remainder` """) add_docstr_all('renorm', r""" renorm(p, dim, maxnorm) -> Tensor See :func:`torch.renorm` """) add_docstr_all('renorm_', r""" renorm_(p, dim, maxnorm) -> Tensor In-place version of :meth:`~Tensor.renorm` """) add_docstr_all('repeat', r""" repeat(*sizes) -> Tensor Repeats this tensor along the specified dimensions. Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. Args: sizes (torch.Size or int...): The number of times to repeat this tensor along each dimension Example:: >>> x = torch.Tensor([1, 2, 3]) >>> x.repeat(4, 2) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 [torch.FloatTensor of size (4,6)] >>> x.repeat(4, 2, 1).size() torch.Size([4, 2, 3]) """) add_docstr_all('reshape', r""" reshape(*shape) -> Tensor Returns a tensor with the same data and number of elements as :attr:`self`, but with the specified shape. Args: shape (tuple of ints or int...): the desired shape See :func:`torch.reshape` """) add_docstr_all('resize_', r""" resize_(*sizes) -> Tensor Resizes :attr:`self` tensor to the specified size. If the number of elements is larger than the current storage size, then the underlying storage is resized to fit the new number of elements. If the number of elements is smaller, the underlying storage is not changed. Existing elements are preserved but any new memory is uninitialized. Args: sizes (torch.Size or int...): the desired size Example:: >>> x = torch.Tensor([[1, 2], [3, 4], [5, 6]]) >>> x.resize_(2, 2) >>> x 1 2 3 4 [torch.FloatTensor of size (2,2)] """) add_docstr_all('resize_as_', r""" resize_as_(tensor) -> Tensor Resizes the :attr:`self` tensor to be the same size as the specified :attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``. """) add_docstr_all('round', r""" round() -> Tensor See :func:`torch.round` """) add_docstr_all('round_', r""" round_() -> Tensor In-place version of :meth:`~Tensor.round` """) add_docstr_all('rsqrt', r""" rsqrt() -> Tensor See :func:`torch.rsqrt` """) add_docstr_all('rsqrt_', r""" rsqrt_() -> Tensor In-place version of :meth:`~Tensor.rsqrt` """) add_docstr_all('scatter_', r""" scatter_(dim, index, src) -> Tensor Writes all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for dimension != :attr:`dim` and by the corresponding value in :attr:`index` for dimension = :attr:`dim`. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 This is the reverse operation of the manner described in :meth:`~Tensor.gather`. :attr:`self`, :attr:`index` and :attr:`src` should have same number of dimensions. It is also required that `index->size[d] <= src->size[d]` for all dimension `d`, and that `index->size[d] <= real->size[d]` for all dimensions `d != dim`. Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be between `0` and `(self.size(dim) -1)` inclusive, and all values in a row along the specified dimension :attr:`dim` must be unique. Args: input (Tensor): the source tensor dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter src (Tensor or float): the source element(s) to scatter Example:: >>> x = torch.rand(2, 5) >>> x 0.4319 0.6500 0.4080 0.8760 0.2355 0.2609 0.4711 0.8486 0.8573 0.1029 [torch.FloatTensor of size (2,5)] >>> torch.zeros(3, 5).scatter_(0, torch.LongTensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x) 0.4319 0.4711 0.8486 0.8760 0.2355 0.0000 0.6500 0.0000 0.8573 0.0000 0.2609 0.0000 0.4080 0.0000 0.1029 [torch.FloatTensor of size (3,5)] >>> z = torch.zeros(2, 4).scatter_(1, torch.LongTensor([[2], [3]]), 1.23) >>> z 0.0000 0.0000 1.2300 0.0000 0.0000 0.0000 0.0000 1.2300 [torch.FloatTensor of size (2,4)] """) add_docstr_all('select', r""" select(dim, index) -> Tensor Slices the :attr:`self` tensor along the selected dimension at the given index. This function returns a tensor with the given dimension removed. Args: dim (int): the dimension to slice index (int): the index to select with .. note:: :meth:`select` is equivalent to slicing. For example, ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. """) add_docstr_all('set_', r""" set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, :attr:`self` tensor will share the same storage and have the same size and strides as :attr:`source`. Changes to elements in one tensor will be reflected in the other. If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying storage, offset, size, and stride. Args: source (Tensor or Storage): the tensor or storage to use storage_offset (int, optional): the offset in the storage size (torch.Size, optional): the desired size. Defaults to the size of the source. stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. """) add_docstr_all('sigmoid', r""" sigmoid() -> Tensor See :func:`torch.sigmoid` """) add_docstr_all('sigmoid_', r""" sigmoid_() -> Tensor In-place version of :meth:`~Tensor.sigmoid` """) add_docstr_all('sign', r""" sign() -> Tensor See :func:`torch.sign` """) add_docstr_all('sign_', r""" sign_() -> Tensor In-place version of :meth:`~Tensor.sign` """) add_docstr_all('sin', r""" sin() -> Tensor See :func:`torch.sin` """) add_docstr_all('sin_', r""" sin_() -> Tensor In-place version of :meth:`~Tensor.sin` """) add_docstr_all('sinh', r""" sinh() -> Tensor See :func:`torch.sinh` """) add_docstr_all('sinh_', r""" sinh_() -> Tensor In-place version of :meth:`~Tensor.sinh` """) add_docstr_all('size', r""" size() -> torch.Size Returns the size of the :attr:`self` tensor. The returned value is a subclass of :class:`tuple`. Example:: >>> torch.Tensor(3, 4, 5).size() torch.Size([3, 4, 5]) """) add_docstr_all('sort', r""" sort(dim=None, descending=False) -> (Tensor, LongTensor) See :func:`torch.sort` """) add_docstr_all('sqrt', r""" sqrt() -> Tensor See :func:`torch.sqrt` """) add_docstr_all('sqrt_', r""" sqrt_() -> Tensor In-place version of :meth:`~Tensor.sqrt` """) add_docstr_all('squeeze', r""" squeeze(dim=None) -> Tensor See :func:`torch.squeeze` """) add_docstr_all('squeeze_', r""" squeeze_(dim=None) -> Tensor In-place version of :meth:`~Tensor.squeeze` """) add_docstr_all('std', r""" std(dim=None, unbiased=True, keepdim=False) -> Tensor See :func:`torch.std` """) add_docstr_all('storage', r""" storage() -> torch.Storage Returns the underlying storage """) add_docstr_all('storage_offset', r""" storage_offset() -> int Returns :attr:`self` tensor's offset in the underlying storage in terms of number of storage elements (not bytes). Example:: >>> x = torch.Tensor([1, 2, 3, 4, 5]) >>> x.storage_offset() 0 >>> x[3:].storage_offset() 3 """) add_docstr_all('stride', r""" stride(dim) -> tuple or int Returns the stride of :attr:`self` tensor. Stride is the jump necessary to go from one element to the next one in the specified dimension :attr:`dim`. A tuple of all strides is returned when no argument is passed in. Otherwise, an integer value is returned as the stride in the particular dimension :attr:`dim`. Args: dim (int, optional): the desired dimension in which stride is required Example:: >>> x = torch.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) >>> x.stride() (5, 1) >>>x.stride(0) 5 >>> x.stride(-1) 1 """) add_docstr_all('sub', r""" sub(value, other) -> Tensor Subtracts a scalar or tensor from :attr:`self` tensor. If both :attr:`value` and :attr:`other` are specified, each element of :attr:`other` is scaled by :attr:`value` before being used. When :attr:`other` is a tensor, the shape of :attr:`other` must be :ref:`broadcastable ` with the shape of the underlying tensor. """) add_docstr_all('sub_', r""" sub_(x) -> Tensor In-place version of :meth:`~Tensor.sub` """) add_docstr_all('sum', r""" sum(dim=None, keepdim=False) -> Tensor See :func:`torch.sum` """) add_docstr_all('svd', r""" svd(some=True) -> (Tensor, Tensor, Tensor) See :func:`torch.svd` """) add_docstr_all('symeig', r""" symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor) See :func:`torch.symeig` """) add_docstr_all('t', r""" t() -> Tensor See :func:`torch.t` """) add_docstr_all('t_', r""" t_() -> Tensor In-place version of :meth:`~Tensor.t` """) add_docstr_all('take', r""" take(indices) -> Tensor See :func:`torch.take` """) add_docstr_all('tan_', r""" tan_() -> Tensor In-place version of :meth:`~Tensor.tan` """) add_docstr_all('tanh', r""" tanh() -> Tensor See :func:`torch.tanh` """) add_docstr_all('tanh_', r""" tanh_() -> Tensor In-place version of :meth:`~Tensor.tanh` """) add_docstr_all('topk', r""" topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor) See :func:`torch.topk` """) add_docstr_all('trace', r""" trace() -> Tensor See :func:`torch.trace` """) add_docstr_all('transpose', r""" transpose(dim0, dim1) -> Tensor See :func:`torch.transpose` """) add_docstr_all('transpose_', r""" transpose_(dim0, dim1) -> Tensor In-place version of :meth:`~Tensor.transpose` """) add_docstr_all('tril', r""" tril(k=0) -> Tensor See :func:`torch.tril` """) add_docstr_all('tril_', r""" tril_(k=0) -> Tensor In-place version of :meth:`~Tensor.tril` """) add_docstr_all('triu', r""" triu(k=0) -> Tensor See :func:`torch.triu` """) add_docstr_all('triu_', r""" triu_(k=0) -> Tensor In-place version of :meth:`~Tensor.triu` """) add_docstr_all('trtrs', r""" trtrs(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) See :func:`torch.trtrs` """) add_docstr_all('trunc', r""" trunc() -> Tensor See :func:`torch.trunc` """) add_docstr_all('trunc_', r""" trunc_() -> Tensor In-place version of :meth:`~Tensor.trunc` """) add_docstr_all('type', r""" type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor Returns the type if `dtype` is not provided, else casts this object to the specified type. If this is already of the correct type, no copy is performed and the original object is returned. Args: dtype (type or string): The desired type non_blocking (bool): If ``True``, and the source is in pinned memory and destination is on the GPU or vice versa, the copy is performed asynchronously with respect to the host. Otherwise, the argument has no effect. **kwargs: For compatibility, may contain the key ``async`` in place of the ``non_blocking`` argument. The ``async`` arg is deprecated. """) add_docstr_all('type_as', r""" type_as(tensor) -> Tensor Returns this tensor cast to the type of the given tensor. This is a no-op if the tensor is already of the correct type. This is equivalent to:: self.type(tensor.type()) Params: tensor (Tensor): the tensor which has the desired type """) add_docstr_all('unfold', r""" unfold(dim, size, step) -> Tensor Returns a tensor which contains all slices of size :attr:`size` from :attr:`self` tensor in the dimension :attr:`dim`. Step between two slices is given by :attr:`step`. If `sizedim` is the size of dimension dim for :attr:`self`, the size of dimension :attr:`dim` in the returned tensor will be `(sizedim - size) / step + 1`. An additional dimension of size size is appended in the returned tensor. Args: dim (int): dimension in which unfolding happens size (int): the size of each slice that is unfolded step (int): the step between each slice Example:: >>> x = torch.arange(1, 8) >>> x 1 2 3 4 5 6 7 [torch.FloatTensor of size (7,)] >>> x.unfold(0, 2, 1) 1 2 2 3 3 4 4 5 5 6 6 7 [torch.FloatTensor of size (6,2)] >>> x.unfold(0, 2, 2) 1 2 3 4 5 6 [torch.FloatTensor of size (3,2)] """) add_docstr_all('uniform_', r""" uniform_(from=0, to=1) -> Tensor Fills :attr:`self` tensor with numbers sampled from the continuous uniform distribution: .. math:: P(x) = \dfrac{1}{\text{to} - \text{from}} """) add_docstr_all('unsqueeze', r""" unsqueeze(dim) -> Tensor See :func:`torch.unsqueeze` """) add_docstr_all('unsqueeze_', r""" unsqueeze_(dim) -> Tensor In-place version of :meth:`~Tensor.unsqueeze` """) add_docstr_all('var', r""" var(dim=None, unbiased=True, keepdim=False) -> Tensor See :func:`torch.var` """) add_docstr_all('view', r""" view(*args) -> Tensor Returns a new tensor with the same data as the :attr:`self` tensor but of a different size. The returned tensor shares the same data and must have the same number of elements, but may have a different size. For a tensor to be viewed, the new view size must be compatible with its original size and stride, i.e., each new view dimension must either be a subspace of an original dimension, or only span across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following contiguity-like condition that :math:`\forall i = 0, \dots, k-1`, .. math:: stride[i] = stride[i+1] \times size[i+1] Otherwise, :func:`contiguous` needs to be called before the tensor can be viewed. Args: args (torch.Size or int...): the desired size Example:: >>> x = torch.randn(4, 4) >>> x.size() torch.Size([4, 4]) >>> y = x.view(16) >>> y.size() torch.Size([16]) >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions >>> z.size() torch.Size([2, 8]) """) add_docstr_all('expand', r""" expand(*sizes) -> Tensor Returns a new view of the :attr:`self` tensor with singleton dimensions expanded to a larger size. Passing -1 as the size for a dimension means not changing the size of that dimension. Tensor can be also expanded to a larger number of dimensions, and the new ones will be appended at the front. For the new dimensions, the size cannot be set to -1. Expanding a tensor does not allocate new memory, but only creates a new view on the existing tensor where a dimension of size one is expanded to a larger size by setting the ``stride`` to 0. Any dimension of size 1 can be expanded to an arbitrary value without allocating new memory. Args: *sizes (torch.Size or int...): the desired expanded size Example:: >>> x = torch.Tensor([[1], [2], [3]]) >>> x.size() torch.Size([3, 1]) >>> x.expand(3, 4) 1 1 1 1 2 2 2 2 3 3 3 3 [torch.FloatTensor of size (3,4)] >>> x.expand(-1, 4) # -1 means not changing the size of that dimension 1 1 1 1 2 2 2 2 3 3 3 3 [torch.FloatTensor of size (3,4)] """) add_docstr_all('zero_', r""" zero_() -> Tensor Fills :attr:`self` tensor with zeros. """) add_docstr_all('matmul', r""" matmul(tensor2) -> Tensor See :func:`torch.matmul` """) add_docstr_all('chunk', r""" chunk(chunks, dim=0) -> List of Tensors See :func:`torch.chunk` """) add_docstr_all('stft', r""" stft(frame_length, hop, fft_size=None, return_onesided=True, window=None, pad_end=0) -> Tensor See :func:`torch.stft` """) add_docstr_all('fft', r""" fft(signal_ndim, normalized=False) -> Tensor See :func:`torch.fft` """) add_docstr_all('ifft', r""" ifft(signal_ndim, normalized=False) -> Tensor See :func:`torch.ifft` """) add_docstr_all('rfft', r""" rfft(signal_ndim, normalized=False, onesided=True) -> Tensor See :func:`torch.rfft` """) add_docstr_all('irfft', r""" irfft(signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor See :func:`torch.irfft` """) add_docstr_all('det', r""" det() -> Tensor See :func:`torch.det` """) add_docstr_all('where', r""" where(condition, y) -> Tensor ``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. See :func:`torch.where` """) add_docstr_all('logdet', r""" logdet() -> Tensor See :func:`torch.logdet` """) add_docstr_all('slogdet', r""" slogdet() -> (Tensor, Tensor) See :func:`torch.slogdet` """)