#include "torch/csrc/python_headers.h" #include "tensor_new.h" #include #include #include #include "torch/csrc/DynamicTypes.h" #include "torch/csrc/Exceptions.h" #include "torch/csrc/Size.h" #include "torch/csrc/autograd/variable.h" #include "torch/csrc/utils/auto_gil.h" #include "torch/csrc/utils/auto_gpu.h" #include "torch/csrc/utils/cuda_lazy_init.h" #include "torch/csrc/utils/numpy_stub.h" #include "torch/csrc/utils/python_arg_parser.h" #include "torch/csrc/utils/python_numbers.h" #include "torch/csrc/utils/python_scalars.h" #include "torch/csrc/utils/python_strings.h" #include "torch/csrc/utils/tensor_conversion_dispatch.h" #include "torch/csrc/utils/tensor_numpy.h" static const int MAX_DIMS = 128; using namespace at; namespace torch { namespace utils { static void maybe_initialize_cuda(const at::Type &type) { if (type.is_cuda()) { torch::utils::cuda_lazy_init(); } } static Tensor dispatch_zeros(const Type& type, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.zeros(sizes); } static Tensor dispatch_ones(const Type& type, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.ones(sizes); } static Tensor dispatch_full(const Type& type, Scalar fill_value, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.full(sizes, fill_value); } static Tensor new_with_sizes(const Type& type, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.tensor(sizes); } static Tensor new_with_storage(const Type& type, Storage& storage) { auto tensor = type.tensor(); tensor.set_(storage); return tensor; } static Tensor new_with_tensor(const Type& type, Tensor other) { if (other.type() != type) { throw TypeError("expected %s (got %s)", type.toString(), other.type().toString()); } return other.slice(); } static Tensor new_with_type_conversion(const Type& type, Tensor other, int64_t device) { return dispatch_type_conversion(other, type, device, false); } static Tensor new_with_tensor_copy(const Type& type, Tensor other, int64_t device) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.copy(other); } static std::vector compute_sizes(PyObject* seq) { std::vector sizes; THPObjectPtr handle; while (PySequence_Check(seq)) { auto length = PySequence_Length(seq); if (length < 0) throw python_error(); sizes.push_back(length); if (sizes.size() > MAX_DIMS) { throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name); } if (length == 0) break; handle = THPObjectPtr(PySequence_GetItem(seq, 0)); seq = handle.get(); } return sizes; } static ScalarType infer_scalar_type(PyObject *obj) { if (PyFloat_Check(obj)) { // this is always guaranteed to be a floating-point type, and makes it more // convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype). return torch::tensor::get_default_tensor_type().scalarType(); } if (THPUtils_checkLong(obj)) { return ScalarType::Long; } if (PyBool_Check(obj)) { // TODO: infer Bool when we have Bool ScalarType return ScalarType::Byte; } if (THPVariable_Check(obj)) { auto var = reinterpret_cast(obj)->cdata; return var.type().scalarType(); } #ifdef WITH_NUMPY if (PyArray_Check(obj)) { auto array = (PyArrayObject*)obj; return numpy_dtype_to_aten(PyArray_TYPE(array)); } #endif if (PySequence_Check(obj)) { at::optional scalarType; auto length = PySequence_Length(obj); if (length < 0) throw python_error(); // match NumPy semantics, except use default tensor type instead of double. if (length == 0) return torch::tensor::get_default_tensor_type().scalarType(); for (int i = 0; i < length; ++i) { THPObjectPtr handle(PySequence_GetItem(obj, i)); if (!handle) throw python_error(); ScalarType item_scalarType = infer_scalar_type(handle.get()); scalarType = (scalarType) ? at::promoteTypes(*scalarType, item_scalarType) : item_scalarType; if (scalarType == ScalarType::Double) { // this won't change (unless we hit undefined, but that will fail later). return *scalarType; } } return *scalarType; } AT_ERROR("Could not infer dtype of %s", Py_TYPE(obj)->tp_name); } static void recursive_store(char* data, IntList sizes, IntList strides, int64_t dim, ScalarType scalarType, int elementSize, PyObject* obj) { int64_t ndim = sizes.size(); if (dim == ndim) { torch::utils::store_scalar(data, scalarType, obj); return; } auto n = sizes[dim]; auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence")); if (!seq) throw python_error(); auto seq_size = PySequence_Fast_GET_SIZE(seq.get()); if (seq_size != n) { throw ValueError("expected sequence of length %lld at dim %lld (got %lld)", (long long)n, (long long)dim, (long long)seq_size); } PyObject** items = PySequence_Fast_ITEMS(seq.get()); for (int64_t i = 0; i < n; i++) { recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]); data += strides[dim] * elementSize; } } static Tensor internal_new_from_data(const Type & type, int device, PyObject* data, bool copy_variables, bool copy_numpy, bool type_inference) { if (THPUtils_checkString(data)) { throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name); } if (THPVariable_Check(data)) { auto var = reinterpret_cast(data)->cdata; const auto& type_to_use = type_inference ? var.type() : type; return copy_variables ? new_with_tensor_copy(type_to_use, var, device) : new_with_type_conversion(type_to_use, var, device); } #ifdef WITH_NUMPY if (PyArray_Check(data)) { auto tensor = autograd::make_variable(tensor_from_numpy(data), /*requires_grad=*/false); const auto& type_to_use = type_inference ? tensor.type() : type; return copy_numpy ? new_with_tensor_copy(type_to_use, tensor, device) : new_with_type_conversion(type_to_use, tensor, device); } #endif auto sizes = compute_sizes(data); ScalarType scalarType = type_inference ? infer_scalar_type(data) : type.scalarType(); auto tensor = autograd::make_variable(CPU(scalarType).tensor(sizes), /*requires_grad=*/false); recursive_store( (char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0, scalarType, tensor.type().elementSizeInBytes(), data); const auto& type_to_use = type_inference ? type.toScalarType(scalarType) : type; return new_with_type_conversion(type_to_use, tensor, device); } Tensor legacy_new_from_data(const Type & type, int device, PyObject *data) { return internal_new_from_data(type, device, data, false, false, false); } static Tensor new_from_data_copy(const Type & type, int device, PyObject *data) { return internal_new_from_data(type, device, data, true, true, false); } static Tensor legacy_new_from_sequence(const Type & type, int device, PyObject* data) { if (!PySequence_Check(data)) { throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name); } return legacy_new_from_data(type, device, data); } static Tensor legacy_sparse_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, Device? device=None)", "new(*, int64_t cdata)|hidden", "new(Tensor indices, Tensor values, *, Device? device=None)", "new(Tensor indices, Tensor values, IntList size, *, Device? device=None)", "new(IntList size, *, Device? device=None)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { AutoGPU auto_gpu(r.deviceInt64(0)); return type.tensor(); } else if (r.idx == 1) { auto cdata = reinterpret_cast(r.toInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 2) { AutoGPU auto_gpu(r.deviceInt64(2)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1)); } else if (r.idx == 3) { AutoGPU auto_gpu(r.deviceInt64(3)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); } else if (r.idx == 4) { PyObject* arg = r.pyobject(0); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return legacy_new_from_sequence(type, r.deviceInt64(1), r.pyobject(0)); } return new_with_sizes(type, r.deviceInt64(1), r.intlist(0)); } throw std::runtime_error("new(): invalid arguments"); } Tensor legacy_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, Device? device=None)", "new(Storage storage)", "new(*, int64_t cdata)|hidden", "new(Tensor other)", "new(IntList size, *, Device? device=None)", "new(PyObject* data, *, Device? device=None)", }); if (type.is_sparse()) { return legacy_sparse_tensor_ctor(type, args, kwargs); } ParsedArgs<2> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { AutoGPU auto_gpu(r.deviceInt64(0)); return type.tensor(); } else if (r.idx == 1) { return new_with_storage(type, *r.storage(0)); } else if (r.idx == 2) { auto cdata = reinterpret_cast(r.toInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 3) { return new_with_tensor(type, r.tensor(0)); } else if (r.idx == 4) { PyObject* arg = r.pyobject(0); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return legacy_new_from_sequence(type, r.deviceInt64(1), r.pyobject(0)); } return new_with_sizes(type, r.deviceInt64(1), r.intlist(0)); } else if (r.idx == 5) { return legacy_new_from_sequence(type, r.deviceInt64(1), r.pyobject(0)); } throw std::runtime_error("new(): invalid arguments"); } static Tensor legacy_sparse_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, Device? device=None)", "new(*, int64_t cdata)|hidden", "new(Tensor indices, Tensor values, *, Device? device=None)", "new(Tensor indices, Tensor values, IntList size, *, Device? device=None)", "new(IntList size, *, Device? device=None)", }); ParsedArgs<5> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { AutoGPU auto_gpu(r.deviceInt64(0)); return type.tensor(); } else if (r.idx == 1) { auto cdata = reinterpret_cast(r.deviceInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 2) { // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't // have a device (we should infer it). AutoGPU auto_gpu(r.deviceInt64(2)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1)); } else if (r.idx == 3) { // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't // have a device (we should infer it). AutoGPU auto_gpu(r.deviceInt64(3)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); } else if (r.idx == 4) { PyObject* arg = r.pyobject(0); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return legacy_new_from_sequence(type, r.deviceInt64(1), r.pyobject(0)); } return new_with_sizes(type, r.deviceInt64(1), r.intlist(0)); } throw std::runtime_error("new(): invalid arguments"); } Tensor legacy_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, Device? device=None)", "new(Storage storage)", "new(*, int64_t cdata)|hidden", "new(Tensor other)", // this doesn't have a dtype/device because it creates an alias. "new(IntList size, *, Device? device=None)", "new(PyObject* data, *, Device? device=None)", }); if (type.is_sparse()) { return legacy_sparse_tensor_new(type, args, kwargs); } ParsedArgs<3> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { AutoGPU auto_gpu(r.deviceInt64(0)); return type.tensor(); } else if (r.idx == 1) { return new_with_storage(type, *r.storage(0)); } else if (r.idx == 2) { auto cdata = reinterpret_cast(r.toInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 3) { return new_with_tensor(type, r.tensor(0)); } else if (r.idx == 4) { PyObject* arg = r.pyobject(0); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return legacy_new_from_sequence(type, r.deviceInt64(1), r.pyobject(0)); } return new_with_sizes(type, r.deviceInt64(1), r.intlist(0)); } else if (r.idx == 5) { return legacy_new_from_sequence(type, r.deviceInt64(1), r.pyobject(0)); } throw std::runtime_error("new(): invalid arguments"); } static const Type& typeWithDefault(PythonArgs& r, int64_t dtype_idx, int64_t device_idx, const Type& type) { auto scalartype = r.scalartypeWithDefault(dtype_idx, type.scalarType()); auto types_device_type = torch::getDeviceType(type); auto device_type = r.isNone(device_idx) ? types_device_type : r.device(device_idx).type; return torch::getType(scalartype, *torch::getLayout(type.backend()), device_type); } static Tensor set_requires_grad(Tensor self, bool requires_grad) { static_cast(self).set_requires_grad(requires_grad); return self; } Tensor sparse_coo_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) { Backend sparse_backend = type.is_cuda() ? kSparseCUDA : kSparseCPU; const auto& default_sparse_type = type.toBackend(sparse_backend); static PythonArgParser parser({ "sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", "sparse_coo_tensor(PyObject* indices, PyObject* values, IntList size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", }); ParsedArgs<6> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { bool type_inference = r.isNone(2); const auto& sparse_type = typeWithDefault(r, 2, 3, default_sparse_type); const auto& dense_type = sparse_type.toBackend(sparse_type.is_cuda() ? kCUDA : kCPU); const auto& index_type = dense_type.toScalarType(kLong); AutoGPU autogpu(r.deviceInt64(3)); // explanation of booleans: allow variables, do type conversion of them, copy numpy data Tensor indices = internal_new_from_data(index_type, -1, r.pyobject(0), false, true, false); Tensor values = internal_new_from_data(dense_type, -1, r.pyobject(1), false, true, type_inference); const auto& sparse_type_to_use = values.type().toBackend(values.type().is_cuda() ? kSparseCUDA : kSparseCPU); return set_requires_grad(sparse_type_to_use.sparse_coo_tensor(indices, values), r.toBool(4)); } else if (r.idx == 1) { bool type_inference = r.isNone(3); const auto& sparse_type = typeWithDefault(r, 3, 4, default_sparse_type); const auto& dense_type = sparse_type.toBackend(sparse_type.is_cuda() ? kCUDA : kCPU); const auto& index_type = dense_type.toScalarType(kLong); AutoGPU autogpu(r.deviceInt64(4)); // explanation of booleans: allow variables, do type conversion of them, copy numpy data Tensor indices = internal_new_from_data(index_type, -1, r.pyobject(0), false, true, false); Tensor values = internal_new_from_data(dense_type, -1, r.pyobject(1), false, true, type_inference); const auto& sparse_type_to_use = values.type().toBackend(values.type().is_cuda() ? kSparseCUDA : kSparseCPU); return set_requires_grad(sparse_type_to_use.sparse_coo_tensor(indices, values, r.intlist(2)), r.toBool(5)); } throw std::runtime_error("sparse_coo_tensor(): invalid arguments"); } Tensor tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { bool type_inference = r.isNone(1); return set_requires_grad(internal_new_from_data( typeWithDefault(r, 1, 2, type), r.deviceInt64(2), r.pyobject(0), true, true, type_inference), r.toBool(3)); } throw std::runtime_error("tensor(): invalid arguments"); } Tensor new_tensor(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { return set_requires_grad(new_from_data_copy( typeWithDefault(r, 1, 2, type), r.deviceInt64(2), r.pyobject(0)), r.toBool(3)); } throw std::runtime_error("new_tensor(): invalid arguments"); } Tensor new_empty(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_empty(IntList size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = typeWithDefault(r, 1, 2, type); return set_requires_grad(new_with_sizes(actual_type, r.deviceInt64(2), r.intlist(0)), r.toBool(3)); } throw std::runtime_error("new_empty(): invalid arguments"); } Tensor new_full(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_full(IntList size, Scalar fill_value, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", }); ParsedArgs<5> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = typeWithDefault(r, 2, 3, type); return set_requires_grad(dispatch_full(actual_type, r.scalar(1), r.deviceInt64(3), r.intlist(0)), r.toBool(4)); } throw std::runtime_error("new_full(): invalid arguments"); } Tensor new_ones(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_ones(IntList size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = typeWithDefault(r, 1, 2, type); return set_requires_grad(dispatch_ones(actual_type, r.deviceInt64(2), r.intlist(0)), r.toBool(3)); } throw std::runtime_error("new_ones(): invalid arguments"); } Tensor new_zeros(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_zeros(IntList size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = typeWithDefault(r, 1, 2, type); return set_requires_grad(dispatch_zeros(actual_type, r.deviceInt64(2), r.intlist(0)), r.toBool(3)); } throw std::runtime_error("new_zeros(): invalid arguments"); } }} // namespace torch::utils