from typing import Any, Dict import torch import torch.nn as nn import torch.nn.quantized as nnq import torch.nn.quantized.dynamic as nnqd from torch.fx import GraphModule # type: ignore from torch.fx import map_arg # type: ignore from torch.fx.graph import Graph from torch.quantization.fx.quantize import _remove_qconfig, is_activation_post_process NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST = { nnqd.Linear, nnq.Linear, nnqd.LSTM, nn.LSTM, } def remove_qconfig_observer_fx(model): # remove activation post process act_post_process_removed_graph = Graph() env: Dict[str, Any] = {} modules = dict(model.named_modules()) def load_arg(a): return map_arg(a, lambda node: env[node.name]) for node in model.graph.nodes: if node.op == "output": act_post_process_removed_graph.output(map_arg(node.args[0], load_arg)) continue if node.op == "call_module" and is_activation_post_process( modules[node.target] ): # remove activation post process node env[node.name] = env[node.args[0].name] else: env[node.name] = act_post_process_removed_graph.node_copy(node, load_arg) _remove_qconfig(model) model = GraphModule(model, act_post_process_removed_graph) return model def _find_match(str_list, key_str, postfix): split_str = key_str.split(".") if split_str[-1] == postfix: match_string = "".join(key_str.split(".")[0:-1]) for s2 in str_list: pattern1 = "".join(s2.split(".")[0:-1]) pattern2 = "".join(s2.split(".")[0:-2]) if match_string == pattern1: return s2 if match_string == pattern2: return s2 # For matching "fc.weight" and "fc._packed_params._packed_params" if postfix == "_packed_params": match_string = "".join(key_str.split(".")[0:-2]) if len(match_string) == 0: return None for s2 in str_list: pattern1 = "".join(s2.split(".")[0:-1]) pattern2 = "".join(s2.split(".")[0:-2]) if match_string == pattern1: return s2 if match_string == pattern2: return s2 else: return None def compare_weights_fx(float_dict, quantized_dict): r"""Compare the weights of the float module with its corresponding quantized module. Return a dict with key corresponding to module names and each entry being a dictionary with two keys 'float' and 'quantized', containing the float and quantized weights. This dict can be used to compare and compute the quantization error of the weights of float and quantized models. Example usage: prepared_model = prepare_fx(float_model, qconfig_dict) backup_prepared_model = copy.deepcopy(prepared_model) quantized_model = convert_fx(prepared_model) qmodel = quantized_model wt_compare_dict = compare_weights(backup_prepared_model.state_dict(), qmodel.state_dict()) for key in wt_compare_dict: print(key, compute_error(wt_compare_dict[key]['float'], wt_compare_dict[key]['quantized'].dequantize())) Args: float_dict: state dict of the float model (prepared model) quantized_dict: state dict of the quantized model Return: weight_dict: dict with key corresponding to module names and each entry being a dictionary with two keys 'float' and 'quantized', containing the float and quantized weights """ torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx.compare_weights_fx" ) weight_dict: Dict[str, Dict] = {} for key in quantized_dict: match_key = _find_match(float_dict, key, "weight") if match_key is not None: weight_dict[key] = {} weight_dict[key]["float"] = float_dict[match_key] weight_dict[key]["quantized"] = quantized_dict[key] continue # For matching "fc.weight" and "fc._packed_params._packed_params" match_key = _find_match(float_dict, key, "_packed_params") if match_key is not None: weight_dict[key] = {} weight_dict[key]["float"] = float_dict[match_key] weight_dict[key]["quantized"] = quantized_dict[key][0] # For LSTM split_str = key.split(".") if split_str[-1] == "param" and split_str[-3] == "_all_weight_values": layer = split_str[-2] module_name = ".".join(split_str[:-3]) float_weight_ih_key = module_name + ".weight_ih_l" + layer float_weight_hh_key = module_name + ".weight_hh_l" + layer if float_weight_ih_key in float_dict and float_weight_hh_key in float_dict: weight_dict[key] = {} weight_dict[key]["float"] = float_dict[float_weight_ih_key] weight_dict[key]["quantized"] = ( quantized_dict[key].__getstate__()[0][4][0].__getstate__()[0][0] ) weight_dict[key]["float"] = float_dict[float_weight_hh_key] weight_dict[key]["quantized"] = ( quantized_dict[key].__getstate__()[0][4][1].__getstate__()[0][0] ) return weight_dict