from __future__ import absolute_import, division, print_function, unicode_literals import copy import torch import torch.nn as nn import torch.nn._intrinsic as nni import torch.nn._intrinsic.quantized as nniq import torch.nn._intrinsic.qat as nniqat import torch.nn.quantized as nnq import torch.nn.quantized.dynamic as nnqd from .QConfig import default_dynamic_qconfig import torch.nn.qat as nnqat DEFAULT_SKIP_LIST = [nn.Dropout, nn.Identity, nn.MaxPool2d, nn.AvgPool2d, nn.AdaptiveAvgPool2d] def propagate_qconfig_helper(module, qconfig_dict, skip_list=DEFAULT_SKIP_LIST, qconfig_parent=None, prefix=''): r"""This is a helper function for `propagate_qconfig` Args: module: input module qconfig_dict: dictionary that maps from name of submodule to quantization configuration qconfig_parent: quantization config of parent module, we will fallback to this config when there is no specified config for current module prefix: corresponding prefix of the current module, used as key in qconfig_dict Return: None, module is modified inplace with qconfig attached """ if type(module) in skip_list: module.qconfig = None if not hasattr(module, 'qconfig'): module.qconfig = qconfig_parent if qconfig_dict: if prefix in qconfig_dict: module.qconfig = qconfig_dict[prefix] elif type(module) in qconfig_dict: module.qconfig = qconfig_dict[type(module)] # Don't quantize empty Sequential, empty Sequential is same as # Identity, but we can't put Sequential into skip list because # we also have non-empty Sequential and the qconfig needs to # be propagated to child in that case # TODO: Add test if len(module._modules) == 0 and type(module) == nn.Sequential: module.qconfig = None for name, child in module.named_children(): module_prefix = prefix + '.' + name if prefix else name propagate_qconfig_helper(child, qconfig_dict, skip_list, module.qconfig, module_prefix) # TODO(jerryzh): expose skip_list def propagate_qconfig(module, qconfig_dict=None): r"""Propagate qconfig through the module hierarchy and assign `qconfig` attribute on each leaf module Args: module: input module qconfig_dict: dictionary that maps from name of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified(when the submodule already has qconfig attribute) Return: None, module is modified inplace with qconfig attached """ if qconfig_dict is None: qconfig_dict = {} propagate_qconfig_helper(module, qconfig_dict) def _observer_forward_hook(self, input, output): r"""Forward hook that calls observer on the output """ return self.observer(output) def add_observer(module): r"""Add observer for the leaf child of the module. This function insert observer module to all leaf child module that has a valid qconfig attribute. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize Return: None, module is modified inplace with added observer modules and forward_hooks """ for child in module.children(): if type(child) == nnq.FloatFunctional: if hasattr(child, 'qconfig') and child.qconfig is not None: child.observer = child.qconfig.activation() else: add_observer(child) # Insert observers only for leaf nodes, note that this observer is for # the output of the module, for input QuantStub will observe them if hasattr(module, 'qconfig') and module.qconfig is not None and \ len(module._modules) == 0: # observer and hook will be gone after we swap the module module.add_module('observer', module.qconfig.activation()) module.register_forward_hook(_observer_forward_hook) class QuantWrapper(nn.Module): r"""A wrapper class that wraps the input module, adds QuantStub and DeQuantStub and surround the call to module with call to quant and dequant modules. This is used by the `quantization` utility functions to add the quant and dequant modules, before `convert` function `QuantStub` will just be observer, it observes the input tensor, after `convert`, `QuantStub` will be swapped to `nnq.Quantize` which does actual quantization. Similarly for `DeQuantStub`. """ def __init__(self, module): super(QuantWrapper, self).__init__() qconfig = module.qconfig if hasattr(module, 'qconfig') else None self.add_module('quant', QuantStub(qconfig)) self.add_module('dequant', DeQuantStub(qconfig)) self.add_module('module', module) self.train(module.training) def forward(self, X): X = self.quant(X) X = self.module(X) return self.dequant(X) def add_quant_dequant(module): r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig Note that this function will modify the children of module inplace and it can return a new module which wraps the input module as well. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize Return: Either the inplace modified module with submodules wrapped in `QuantWrapper` based on qconfig or a new `QuantWrapper` module which wraps the input module, the latter case only happens when the input module is a leaf module and we want to quantize it. """ if len(module._modules) == 0 and hasattr(module, 'qconfig') and module.qconfig: return QuantWrapper(module) for name, child in module.named_children(): module._modules[name] = add_quant_dequant(child) return module def prepare(model): r"""Prepares the model for calibration or training. The model will be attached with observer and quant dequant or fake quant modules, and qconfig will be propagated. Note that the model will be modified inplace but in case the input model is a leaf model, a wrapped model will be returned. Args: mod: input model """ propagate_qconfig(model) add_observer(model) class QuantStub(nn.Module): r"""Quantize stub module, before calibration, this is same as an observer, it will be swapped as `nnq.Quantize` in `convert`. Args: qconfig: quantization configuration for the tensor, if qconfig is not provided, we will get qconfig from parent modules """ def __init__(self, qconfig=None): super(QuantStub, self).__init__() if qconfig: self.qconfig = qconfig def forward(self, x): return x class DeQuantStub(nn.Module): r"""Dequantize stub module, before calibration, this is same as identity, this will be swapped as `nnq.DeQuantize` in `convert`. """ def __init__(self, qconfig=None): super(DeQuantStub, self).__init__() if qconfig: self.qconfig = qconfig def forward(self, x): return x # Map for swapping float module to quantized ones DEFAULT_MODULE_MAPPING = { nn.Linear: nnq.Linear, nn.ReLU: nnq.ReLU, nn.Conv2d: nnq.Conv2d, QuantStub: nnq.Quantize, DeQuantStub: nnq.DeQuantize, # Wrapper Modules: nnq.FloatFunctional: nnq.QFunctional, # Intrinsic modules: nni.ConvReLU2d: nniq.ConvReLU2d, nni.LinearReLU: nniq.LinearReLU, nniqat.ConvReLU2d: nniq.ConvReLU2d, nniqat.LinearReLU: nniq.LinearReLU, nniqat.ConvBn2d: nnq.Conv2d, nniqat.ConvBnReLU2d: nniq.ConvReLU2d, # QAT modules: nnqat.Linear: nnq.Linear, nnqat.Conv2d: nnq.Conv2d, } # Map for swapping float module to qat modules DEFAULT_QAT_MODULE_MAPPING = { nn.Linear: nnqat.Linear, nn.Conv2d: nnqat.Conv2d, # Intrinsic modules: nni.ConvBn2d: nniqat.ConvBn2d, nni.ConvBnReLU2d: nniqat.ConvBnReLU2d, nni.ConvReLU2d: nniqat.ConvReLU2d, nni.LinearReLU: nniqat.LinearReLU } DEFAULT_DYNAMIC_MODULE_MAPPING = { nn.Linear: nnqd.Linear, nn.LSTM: nnqd.LSTM, } def quantize(model, run_fn, run_args, mapping=DEFAULT_MODULE_MAPPING): r"""Converts a float model to quantized model. First it will prepare the model for calibration or training, then it calls `run_fn` which will run the calibration step or training step, after that we will call `convert` which will convert the model to a quantized model. Args: model: input model run_fn: a function for evaluating the prepared model, can be a function that simply runs the prepared model or a training loop run_args: positional arguments for `run_fn` Return: Quantized model. """ model = copy.deepcopy(model) model.eval() prepare(model) run_fn(model, run_args) convert(model, mapping) return model DEFAULT_QCONFIG_DICT = { nn.Linear : default_dynamic_qconfig, nn.LSTM : default_dynamic_qconfig, } def quantize_dynamic(model, qconfig_dict=DEFAULT_QCONFIG_DICT, mapping=DEFAULT_DYNAMIC_MODULE_MAPPING, dtype=torch.qint8): r"""Converts a float model to dynamic quantized model. Perform dynamic training and output a quantized model. """ model = copy.deepcopy(model) model.eval() propagate_qconfig(model, qconfig_dict) convert(model, mapping, dtype) return model def prepare_qat(model): prepare(model) convert(model, DEFAULT_QAT_MODULE_MAPPING) def quantize_qat(model, run_fn, run_args): r"""Do quantization aware training and output a quantized model Args: model: input model run_fn: a function for evaluating the prepared model, can be a function that simply runs the prepared model or a training loop run_args: positional arguments for `run_fn` Return: Quantized model. """ model = copy.deepcopy(model) model.train() prepare_qat(model) run_fn(model, run_args) convert(model) return model def convert(module, mapping=DEFAULT_MODULE_MAPPING, dtype=torch.qint8): r"""Converts the float module with observers(where we can get quantization parameters) to a quantized module. Args: module: calibrated module with observers mapping: a dictionary that maps from float module type to quantized module type, can be overwrritten to allow swapping user defined Modules """ reassign = {} # TODO(jerryzh): remove after deciding on the impl of intrinsic modules SWAPPABLE_MODULES = (nni.ConvBn2d, nni.ConvBnReLU2d, nni.LinearReLU, nni.ConvReLU2d) for name, mod in module.named_children(): if type(mod) not in SWAPPABLE_MODULES: convert(mod, mapping, dtype) reassign[name] = swap_module(mod, mapping, dtype) for key, value in reassign.items(): module._modules[key] = value def swap_module(mod, mapping, dtype=torch.qint8): r"""Swaps the module if it has a quantized counterpart and it has an `observer` attached. Args: mod: input module mapping: a dictionary that maps from nn module to nnq module Return: The corresponding quantized module of `mod` """ new_mod = mod if hasattr(mod, 'qconfig') and mod.qconfig is not None: if type(mod) in mapping: supported_scalar_types = [torch.qint8, torch.float16] if dtype not in supported_scalar_types: raise RuntimeError('Unsupported dtype: {}'.format(dtype)) if dtype == torch.qint8: new_mod = mapping[type(mod)].from_float(mod) elif dtype == torch.float16: # We want to support float16 dynamic quantization new_mod = mapping[type(mod)].from_float(mod, dtype) return new_mod def get_observer_dict(mod, target_dict, prefix=""): r"""Traverse the modules and save all observers into dict. This is mainly used for quantization accuracy debug Args: mod: the top module we want to save all observers prefix: the prefix for the current module target_dict: the dictionary used to save all the observers """ def get_prefix(prefix): return prefix if prefix == "" else prefix + '.' if hasattr(mod, 'observer'): target_dict[get_prefix(prefix) + 'observer'] = mod.observer for name, child in mod.named_children(): module_prefix = get_prefix(prefix) + name if prefix else name get_observer_dict(child, target_dict, module_prefix)