r"""Importing this file must **not** initialize CUDA context. test_distributed relies on this assumption to properly run. This means that when this is imported no CUDA calls shall be made, including torch.cuda.device_count(), etc. common_cuda.py can freely initialize CUDA context when imported. """ import sys import os import platform import re import gc import types import inspect import argparse import unittest import warnings import random import contextlib import socket from collections import OrderedDict from functools import wraps from itertools import product from copy import deepcopy from numbers import Number import __main__ import errno import torch import torch.cuda from torch._utils_internal import get_writable_path from torch._six import string_classes, inf import torch.backends.cudnn import torch.backends.mkl torch.set_default_tensor_type('torch.DoubleTensor') torch.backends.cudnn.disable_global_flags() parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--seed', type=int, default=1234) parser.add_argument('--accept', action='store_true') args, remaining = parser.parse_known_args() SEED = args.seed ACCEPT = args.accept UNITTEST_ARGS = [sys.argv[0]] + remaining torch.manual_seed(SEED) def run_tests(argv=UNITTEST_ARGS): unittest.main(argv=argv) PY3 = sys.version_info > (3, 0) PY34 = sys.version_info >= (3, 4) IS_WINDOWS = sys.platform == "win32" IS_PPC = platform.machine() == "ppc64le" def _check_module_exists(name): r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ if not PY3: # Python 2 import imp try: imp.find_module(name) return True except ImportError: return False elif PY34: # Python [3, 3.4) import importlib loader = importlib.find_loader(name) return loader is not None else: # Python >= 3.4 import importlib spec = importlib.util.find_spec(name) return spec is not None TEST_NUMPY = _check_module_exists('numpy') TEST_SCIPY = _check_module_exists('scipy') TEST_MKL = torch.backends.mkl.is_available() # On Py2, importing librosa 0.6.1 triggers a TypeError (if using newest joblib) # see librosa/librosa#729. # TODO: allow Py2 when librosa 0.6.2 releases TEST_LIBROSA = _check_module_exists('librosa') and PY3 # Python 2.7 doesn't have spawn NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1' or sys.version_info[0] == 2 TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1' TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1' TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1' if TEST_NUMPY: import numpy def skipIfRocm(fn): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_ROCM: raise unittest.SkipTest("test doesn't currently work on the ROCm stack") else: fn(*args, **kwargs) return wrapper def skipIfNoLapack(fn): @wraps(fn) def wrapper(*args, **kwargs): if not torch._C.has_lapack: raise unittest.SkipTest('PyTorch compiled without Lapack') else: fn(*args, **kwargs) return wrapper def skipCUDAMemoryLeakCheckIf(condition): def dec(fn): if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True fn._do_cuda_memory_leak_check = not condition return fn return dec def suppress_warnings(fn): @wraps(fn) def wrapper(*args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") fn(*args, **kwargs) return wrapper def get_cpu_type(type_name): module, name = type_name.rsplit('.', 1) assert module == 'torch.cuda' return getattr(torch, name) def get_gpu_type(type_name): if isinstance(type_name, type): type_name = '{}.{}'.format(type_name.__module__, type_name.__name__) module, name = type_name.rsplit('.', 1) assert module == 'torch' return getattr(torch.cuda, name) def to_gpu(obj, type_map={}): if isinstance(obj, torch.Tensor): assert obj.is_leaf t = type_map.get(obj.type(), get_gpu_type(obj.type())) with torch.no_grad(): res = obj.clone().type(t) res.requires_grad = obj.requires_grad return res elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj) def get_function_arglist(func): return inspect.getargspec(func).args def set_rng_seed(seed): torch.manual_seed(seed) random.seed(seed) if TEST_NUMPY: numpy.random.seed(seed) @contextlib.contextmanager def freeze_rng_state(): rng_state = torch.get_rng_state() if torch.cuda.is_available(): cuda_rng_state = torch.cuda.get_rng_state() yield if torch.cuda.is_available(): torch.cuda.set_rng_state(cuda_rng_state) torch.set_rng_state(rng_state) def iter_indices(tensor): if tensor.dim() == 0: return range(0) if tensor.dim() == 1: return range(tensor.size(0)) return product(*(range(s) for s in tensor.size())) def is_iterable(obj): try: iter(obj) return True except TypeError: return False class CudaMemoryLeakCheck(): def __init__(self, testcase, name=None): self.name = testcase.id() if name is None else name self.testcase = testcase # initialize context & RNG to prevent false positive detections # when the test is the first to initialize those from common_cuda import initialize_cuda_context_rng initialize_cuda_context_rng() @staticmethod def get_cuda_memory_usage(): # we don't need CUDA synchronize because the statistics are not tracked at # actual freeing, but at when marking the block as free. num_devices = torch.cuda.device_count() gc.collect() return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices)) def __enter__(self): self.befores = self.get_cuda_memory_usage() def __exit__(self, exec_type, exec_value, traceback): # Don't check for leaks if an exception was thrown if exec_type is not None: return afters = self.get_cuda_memory_usage() for i, (before, after) in enumerate(zip(self.befores, afters)): self.testcase.assertEqual( before, after, '{} leaked {} bytes CUDA memory on device {}'.format( self.name, after - before, i)) class TestCase(unittest.TestCase): precision = 1e-5 maxDiff = None _do_cuda_memory_leak_check = False def __init__(self, method_name='runTest'): super(TestCase, self).__init__(method_name) # Wraps the tested method if we should do CUDA memory check. test_method = getattr(self, method_name) self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True) # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044 if self._do_cuda_memory_leak_check and not IS_WINDOWS: # the import below may initialize CUDA context, so we do it only if # self._do_cuda_memory_leak_check is True. from common_cuda import TEST_CUDA fullname = self.id().lower() # class_name.method_name if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname): setattr(self, method_name, self.wrap_with_cuda_memory_check(test_method)) def assertLeaksNoCudaTensors(self, name=None): name = self.id() if name is None else name return CudaMemoryLeakCheck(self, name) def wrap_with_cuda_memory_check(self, method): # Assumes that `method` is the tested function in `self`. # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope # alive, so this cannot be done in setUp and tearDown because # tearDown is run unconditionally no matter whether the test # passes or not. For the same reason, we can't wrap the `method` # call in try-finally and always do the check. @wraps(method) def wrapper(self, *args, **kwargs): with self.assertLeaksNoCudaTensors(): method(*args, **kwargs) return types.MethodType(wrapper, self) def setUp(self): set_rng_seed(SEED) def assertTensorsSlowEqual(self, x, y, prec=None, message=''): max_err = 0 self.assertEqual(x.size(), y.size()) for index in iter_indices(x): max_err = max(max_err, abs(x[index] - y[index])) self.assertLessEqual(max_err, prec, message) def safeToDense(self, t): r = self.safeCoalesce(t) return r.to_dense() def safeCoalesce(self, t): tc = t.coalesce() self.assertEqual(tc.to_dense(), t.to_dense()) self.assertTrue(tc.is_coalesced()) # Our code below doesn't work when nnz is 0, because # then it's a 0D tensor, not a 2D tensor. if t._nnz() == 0: self.assertEqual(t._indices(), tc._indices()) self.assertEqual(t._values(), tc._values()) return tc value_map = {} for idx, val in zip(t._indices().t(), t._values()): idx_tup = tuple(idx.tolist()) if idx_tup in value_map: value_map[idx_tup] += val else: value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val new_indices = sorted(list(value_map.keys())) new_values = [value_map[idx] for idx in new_indices] if t._values().ndimension() < 2: new_values = t._values().new(new_values) else: new_values = torch.stack(new_values) new_indices = t._indices().new(new_indices).t() tg = t.new(new_indices, new_values, t.size()) self.assertEqual(tc._indices(), tg._indices()) self.assertEqual(tc._values(), tg._values()) if t.is_coalesced(): self.assertEqual(tc._indices(), t._indices()) self.assertEqual(tc._values(), t._values()) return tg def assertEqual(self, x, y, prec=None, message='', allow_inf=False): if isinstance(prec, str) and message == '': message = prec prec = None if prec is None: prec = self.precision if isinstance(x, torch.Tensor) and isinstance(y, Number): self.assertEqual(x.item(), y, prec, message, allow_inf) elif isinstance(y, torch.Tensor) and isinstance(x, Number): self.assertEqual(x, y.item(), prec, message, allow_inf) elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor): def assertTensorsEqual(a, b): super(TestCase, self).assertEqual(a.size(), b.size(), message) if a.numel() > 0: b = b.type_as(a) b = b.cuda(device=a.get_device()) if a.is_cuda else b.cpu() # check that NaNs are in the same locations nan_mask = a != a self.assertTrue(torch.equal(nan_mask, b != b), message) diff = a - b diff[nan_mask] = 0 # inf check if allow_inf=True if allow_inf: inf_mask = (a == float("inf")) | (a == float("-inf")) self.assertTrue(torch.equal(inf_mask, (b == float("inf")) | (b == float("-inf"))), message) diff[inf_mask] = 0 # TODO: implement abs on CharTensor if diff.is_signed() and 'CharTensor' not in diff.type(): diff = diff.abs() max_err = diff.max() self.assertLessEqual(max_err, prec, message) super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message) if x.is_sparse: x = self.safeCoalesce(x) y = self.safeCoalesce(y) assertTensorsEqual(x._indices(), y._indices()) assertTensorsEqual(x._values(), y._values()) else: assertTensorsEqual(x, y) elif isinstance(x, string_classes) and isinstance(y, string_classes): super(TestCase, self).assertEqual(x, y, message) elif type(x) == set and type(y) == set: super(TestCase, self).assertEqual(x, y, message) elif isinstance(x, dict) and isinstance(y, dict): if isinstance(x, OrderedDict) and isinstance(y, OrderedDict): self.assertEqual(x.items(), y.items()) else: self.assertEqual(set(x.keys()), set(y.keys())) key_list = list(x.keys()) self.assertEqual([x[k] for k in key_list], [y[k] for k in key_list]) elif is_iterable(x) and is_iterable(y): super(TestCase, self).assertEqual(len(x), len(y), message) for x_, y_ in zip(x, y): self.assertEqual(x_, y_, prec, message) elif isinstance(x, bool) and isinstance(y, bool): super(TestCase, self).assertEqual(x, y, message) elif isinstance(x, Number) and isinstance(y, Number): if abs(x) == inf or abs(y) == inf: if allow_inf: super(TestCase, self).assertEqual(x, y, message) else: self.fail("Expected finite numeric values - x={}, y={}".format(x, y)) return super(TestCase, self).assertLessEqual(abs(x - y), prec, message) else: super(TestCase, self).assertEqual(x, y, message) def assertAlmostEqual(self, x, y, places=None, msg=None, delta=None, allow_inf=None): prec = delta if places: prec = 10**(-places) self.assertEqual(x, y, prec, msg, allow_inf) def assertNotEqual(self, x, y, prec=None, message=''): if isinstance(prec, str) and message == '': message = prec prec = None if prec is None: prec = self.precision if isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor): if x.size() != y.size(): super(TestCase, self).assertNotEqual(x.size(), y.size()) self.assertGreater(x.numel(), 0) y = y.type_as(x) y = y.cuda(device=x.get_device()) if x.is_cuda else y.cpu() nan_mask = x != x if torch.equal(nan_mask, y != y): diff = x - y if diff.is_signed(): diff = diff.abs() diff[nan_mask] = 0 max_err = diff.max() self.assertGreaterEqual(max_err, prec, message) elif type(x) == str and type(y) == str: super(TestCase, self).assertNotEqual(x, y) elif is_iterable(x) and is_iterable(y): super(TestCase, self).assertNotEqual(x, y) else: try: self.assertGreaterEqual(abs(x - y), prec, message) return except (TypeError, AssertionError): pass super(TestCase, self).assertNotEqual(x, y, message) def assertObjectIn(self, obj, iterable): for elem in iterable: if id(obj) == id(elem): return raise AssertionError("object not found in iterable") # TODO: Support context manager interface # NB: The kwargs forwarding to callable robs the 'subname' parameter. # If you need it, manually apply your callable in a lambda instead. def assertExpectedRaises(self, exc_type, callable, *args, **kwargs): subname = None if 'subname' in kwargs: subname = kwargs['subname'] del kwargs['subname'] try: callable(*args, **kwargs) except exc_type as e: self.assertExpected(str(e), subname) return # Don't put this in the try block; the AssertionError will catch it self.fail(msg="Did not raise when expected to") def assertWarns(self, callable, msg=''): r""" Test if :attr:`callable` raises a warning. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised callable() self.assertTrue(len(ws) > 0, msg) def assertWarnsRegex(self, callable, regex, msg=''): r""" Test if :attr:`callable` raises any warning with message that contains the regex pattern :attr:`regex`. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised callable() self.assertTrue(len(ws) > 0, msg) found = any(re.search(regex, str(w.message)) is not None for w in ws) self.assertTrue(found, msg) def assertExpected(self, s, subname=None): r""" Test that a string matches the recorded contents of a file derived from the name of this test and subname. This file is placed in the 'expect' directory in the same directory as the test script. You can automatically update the recorded test output using --accept. If you call this multiple times in a single function, you must give a unique subname each time. """ if not (isinstance(s, str) or (sys.version_info[0] == 2 and isinstance(s, unicode))): raise TypeError("assertExpected is strings only") def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text # NB: we take __file__ from the module that defined the test # class, so we place the expect directory where the test script # lives, NOT where test/common.py lives. This doesn't matter in # PyTorch where all test scripts are in the same directory as # test/common.py, but it matters in onnx-pytorch module_id = self.__class__.__module__ munged_id = remove_prefix(self.id(), module_id + ".") test_file = os.path.realpath(sys.modules[module_id].__file__) expected_file = os.path.join(os.path.dirname(test_file), "expect", munged_id) subname_output = "" if subname: expected_file += "-" + subname subname_output = " ({})".format(subname) expected_file += ".expect" expected = None def accept_output(update_type): print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s)) with open(expected_file, 'w') as f: f.write(s) try: with open(expected_file) as f: expected = f.read() except IOError as e: if e.errno != errno.ENOENT: raise elif ACCEPT: return accept_output("output") else: raise RuntimeError( ("I got this output for {}{}:\n\n{}\n\n" "No expect file exists; to accept the current output, run:\n" "python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) # a hack for JIT tests if IS_WINDOWS: expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected) s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s) if ACCEPT: if expected != s: return accept_output("updated output") else: if hasattr(self, "assertMultiLineEqual"): # Python 2.7 only # NB: Python considers lhs "old" and rhs "new". self.assertMultiLineEqual(expected, s) else: self.assertEqual(s, expected) if sys.version_info < (3, 2): # assertRegexpMatches renamed to assertRegex in 3.2 assertRegex = unittest.TestCase.assertRegexpMatches # assertRaisesRegexp renamed to assertRaisesRegex in 3.2 assertRaisesRegex = unittest.TestCase.assertRaisesRegexp def download_file(url, binary=True): if sys.version_info < (3,): from urlparse import urlsplit import urllib2 request = urllib2 error = urllib2 else: from urllib.parse import urlsplit from urllib import request, error filename = os.path.basename(urlsplit(url)[2]) data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data')) path = os.path.join(data_dir, filename) if os.path.exists(path): return path try: data = request.urlopen(url, timeout=15).read() with open(path, 'wb' if binary else 'w') as f: f.write(data) return path except error.URLError: msg = "could not download test file '{}'".format(url) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg) def find_free_port(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(('localhost', 0)) sockname = sock.getsockname() sock.close() return sockname[1] # Methods for matrix generation # Used in test_autograd.py and test_torch.py def prod_single_zero(dim_size): result = torch.randn(dim_size, dim_size) result[0, 1] = 0 return result def random_square_matrix_of_rank(l, rank): assert rank <= l A = torch.randn(l, l) u, s, v = A.svd() for i in range(l): if i >= rank: s[i] = 0 elif s[i] == 0: s[i] = 1 return u.mm(torch.diag(s)).mm(v.transpose(0, 1)) def random_symmetric_matrix(l): A = torch.randn(l, l) for i in range(l): for j in range(i): A[i, j] = A[j, i] return A def random_symmetric_psd_matrix(l): A = torch.randn(l, l) return A.mm(A.transpose(0, 1)) def random_symmetric_pd_matrix(l, eps=1e-5): A = torch.randn(l, l) return A.mm(A.transpose(0, 1)) + torch.eye(l) * eps def make_nonzero_det(A, sign=None, min_singular_value=0.1): u, s, v = A.svd() s[s < min_singular_value] = min_singular_value A = u.mm(torch.diag(s)).mm(v.t()) det = A.det().item() if sign is not None: if (det < 0) ^ (sign < 0): A[0, :].neg_() return A def random_fullrank_matrix_distinct_singular_value(l, *batches): if len(batches) == 0: A = torch.randn(l, l) u, _, v = A.svd() s = torch.arange(1., l + 1).mul_(1.0 / (l + 1)) return u.mm(torch.diag(s)).mm(v.t()) else: all_matrices = [] for _ in range(0, torch.prod(torch.as_tensor(batches)).item()): A = torch.randn(l, l) u, _, v = A.svd() s = torch.arange(1., l + 1).mul_(1.0 / (l + 1)) all_matrices.append(u.mm(torch.diag(s)).mm(v.t())) return torch.stack(all_matrices).reshape(*(batches + (l, l)))