from __future__ import annotations import contextlib import dataclasses import dis import functools import inspect import logging import os import sys import textwrap import threading import traceback import types import warnings import weakref from enum import Enum from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union from unittest.mock import patch import torch import torch.fx import torch.utils._pytree as pytree from torch import _guards from torch.fx.experimental.proxy_tensor import make_fx from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo from torch.nn.parallel.distributed import DistributedDataParallel from .backends.registry import CompilerFn, lookup_backend from .hooks import Hooks if TYPE_CHECKING: from torch._C._dynamo.eval_frame import ( # noqa: F401 reset_code, set_eval_frame, set_guard_error_hook, set_guard_fail_hook, skip_code, unsupported, ) else: for name in dir(torch._C._dynamo.eval_frame): if name.startswith("__"): continue globals()[name] = getattr(torch._C._dynamo.eval_frame, name) from . import config, convert_frame, skipfiles, utils from .exc import ResetRequired from .mutation_guard import install_generation_tagging_init from .types import DynamoCallback from .utils import compile_times log = logging.getLogger(__name__) from torch._dispatch.python import enable_python_dispatcher from torch._subclasses.fake_tensor import FakeTensor from torch.fx.experimental import proxy_tensor always_optimize_code_objects = utils.ExactWeakKeyDictionary() null_context = contextlib.nullcontext # See https://github.com/python/typing/pull/240 class Unset(Enum): token = 0 unset = Unset.token compile_lock = threading.RLock() most_recent_backend: Optional[CompilerFn] = None class OptimizedModule(torch.nn.Module): """ Wraps the original nn.Module object and later patches its forward method to optimized self.forward method. """ def __init__(self, mod, dynamo_ctx): super().__init__() # Installs the params/buffer self._orig_mod = mod self.dynamo_ctx = dynamo_ctx def __getattr__(self, name): if name == "_orig_mod": return self._modules["_orig_mod"] return getattr(self._orig_mod, name) def __setattr__(self, name, value): if name == "forward": log.warning( "Modifying OptimizedModule.forward may not do what you expect. " "Most usage of OptimizedModule routes through __call__, which will never call OptimizedModule.forward. " "Instead, OptimizedModule.__call__ will invoke a compiled version of the wrapped module's __call__. " "OptimizedModule.forward is provided only as an escape hatch for invoking the compiled wrapped module " "forward method without __call__ (and thus bypassing module hooks). " "To alter the behavior of the wrapped module, modify its forward before compilation. " ) super().__setattr__(name, value) def __call__(self, *args, **kwargs): if hasattr(self._orig_mod, "_initialize_hook"): # In the case of a lazy module, we want to run # the pre-hooks which initialize it. # Afterwards, lazy module deletes its pre-hooks # to avoid treating it as lazy on subsequent recompile. assert len(kwargs) == 0 self._orig_mod._infer_parameters(self._orig_mod, args) return self.dynamo_ctx(self._orig_mod.__call__)(*args, **kwargs) def forward(self, *args, **kwargs): log.warning( "Calling OptimizedModule.forward will compile/execute wrapped model forward without running module hooks. " "Usually, you should invoke OptimizedModule.__call__ instead, which follows pytorch module behavior." ) return self.dynamo_ctx(self._orig_mod.forward)(*args, **kwargs) def remove_from_cache(f): """ Make sure f.__code__ is not cached to force a recompile """ if isinstance(f, types.CodeType): reset_code(f) elif hasattr(f, "__code__"): reset_code(f.__code__) elif hasattr(getattr(f, "forward", None), "__code__"): reset_code(f.forward.__code__) else: from . import reset reset() log.warning("could not determine __code__ for %s", f) def nothing(): pass def innermost_fn(fn): """ In case of nesting of _TorchDynamoContext calls, find the innermost function. TorchDynamo caches on fn.__code__ object, so its necessary to find the innermost function to pass on the optimize, run, disable etc. """ unaltered_fn = fn while hasattr(unaltered_fn, "_torchdynamo_orig_callable"): unaltered_fn = unaltered_fn._torchdynamo_orig_callable assert callable(unaltered_fn) return unaltered_fn @contextlib.contextmanager def enable_dynamic(enable: bool = True, export: bool = False): if not enable: yield return with config.patch(dynamic_shapes=True): yield class _TorchDynamoContext: def __init__( self, callback: DynamoCallback, on_enter=nothing, backend_ctx_ctor=null_context, patch_fn=nothing, first_ctx=False, *, export=False, dynamic=False, ): super().__init__() assert callable(callback) or callback is False or callback is None self.callback: DynamoCallback = callback self.prior: Union[Unset, DynamoCallback] = unset self.on_enter = on_enter self.extra_ctx_ctor = backend_ctx_ctor self.first_ctx = first_ctx self.export = export self.dynamic = dynamic patch_fn() def __enter__(self): if config.raise_on_ctx_manager_usage: raise RuntimeError( "torch._dynamo.optimize(...) is used with a context manager. " "Please refer to https://github.com/pytorch/torchdynamo#usage-example " "to use torch._dynamo.optimize(...) as an annotation/decorator. " ) self.on_enter() self.prior = set_eval_frame(self.callback) self.backend_ctx = self.extra_ctx_ctor() self.backend_ctx.__enter__() self.dynamic_ctx = enable_dynamic(self.dynamic, self.export) self.dynamic_ctx.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): assert self.prior is not unset set_eval_frame(self.prior) self.prior = unset # TODO: This is totally not the right way to chain contexts manually self.dynamic_ctx.__exit__(exc_type, exc_val, exc_tb) self.backend_ctx.__exit__(exc_type, exc_val, exc_tb) def __call__(self, fn): fn = innermost_fn(fn) # Optimize the forward method of torch.nn.Module object if isinstance(fn, torch.nn.Module): mod = fn new_mod = OptimizedModule(mod, self) # Save the function pointer to find the original callable while nesting # of decorators. new_mod._torchdynamo_orig_callable = mod.forward return new_mod assert callable(fn) callback = self.callback on_enter = self.on_enter backend_ctx_ctor = self.extra_ctx_ctor @functools.wraps(fn) def _fn(*args, **kwargs): if ( not isinstance(self, DisableContext) and torch.fx._symbolic_trace.is_fx_tracing() ): if config.error_on_nested_fx_trace: raise RuntimeError( "Detected that you are using FX to symbolically trace " "a dynamo-optimized function. This is not supported at the moment." ) else: return fn(*args, **kwargs) on_enter() prior = set_eval_frame(callback) backend_ctx = backend_ctx_ctor() backend_ctx.__enter__() dynamic_ctx = enable_dynamic(self.dynamic, self.export) dynamic_ctx.__enter__() try: return fn(*args, **kwargs) finally: set_eval_frame(prior) dynamic_ctx.__exit__(None, None, None) backend_ctx.__exit__(None, None, None) # hooks to properly handle inlining if isinstance(self, DisableContext): _fn._torchdynamo_disable = True # type: ignore[attr-defined] else: _fn._torchdynamo_inline = fn # type: ignore[attr-defined] # Save the function pointer to find the original callable while nesting # of decorators. _fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined] # If the function is called using torch._dynamo.optimize decorator, we # should prevent any type of skipping. if callback not in (None, False): if not hasattr(fn, "__code__"): raise RuntimeError( textwrap.dedent( """ torch._dynamo.optimize is called on a non function object. If this is a callable class, please wrap the relevant code into a function and optimize the wrapper function. >> class CallableClass: >> def __init__(self): >> super().__init__() >> self.relu = torch.nn.ReLU() >> >> def __call__(self, x): >> return self.relu(torch.sin(x)) >> >> def print_hello(self): >> print("Hello world") >> >> mod = CallableClass() If you want to optimize the __call__ function and other code, wrap that up in a function >> def wrapper_fn(x): >> y = mod(x) >> return y.sum() and then optimize the wrapper_fn >> opt_wrapper_fn = torch._dynamo.optimize(wrapper_fn) """ ) ) always_optimize_code_objects[fn.__code__] = True return _fn class OptimizeContext(_TorchDynamoContext): @staticmethod def _different_backend(old, new): return not (old == new or old is None) def __init__( self, callback, backend_ctx_ctor, first_ctx=False, *, export=False, dynamic=False, ): def on_enter(): global most_recent_backend if OptimizeContext._different_backend(most_recent_backend, compiler_fn): if config.raise_on_backend_change: raise ResetRequired() else: warnings.warn( "changing options to `torch.compile()` may require " "calling `torch._dynamo.reset()` to take effect" ) most_recent_backend = compiler_fn install_generation_tagging_init() compiler_fn = innermost_fn(callback) super().__init__( callback=callback, on_enter=on_enter, backend_ctx_ctor=backend_ctx_ctor, patch_fn=TorchPatcher.patch, first_ctx=first_ctx, export=export, dynamic=dynamic, ) class RunOnlyContext(_TorchDynamoContext): def __init__(self): super().__init__(callback=False) class DisableContext(_TorchDynamoContext): def __init__(self): super().__init__(callback=None) def first_real_inst_idx(code): if sys.version_info < (3, 11): return 0 for inst in dis.get_instructions(code): if inst.opname == "RESUME": return inst.offset // 2 raise RuntimeError("RESUME instruction not found in code") def catch_errors_wrapper(callback, hooks: Hooks): @functools.wraps(callback) def catch_errors(frame, cache_size): if ( # TODO: the first condition is not covered by any test frame.f_lasti >= first_real_inst_idx(frame.f_code) or skipfiles.check(frame.f_code.co_filename) or config.disable ): log.debug("skipping %s %s", frame.f_code.co_name, frame.f_code.co_filename) return None if frame.f_code.co_filename == "" and frame.f_code.co_name == "__new__": # nametuple constructor return None if config.optimize_ddp: ddp_module = DistributedDataParallel._get_active_ddp_module() if ddp_module: with compile_lock: from torch._dynamo.backends.distributed import DDPOptimizer ddp_optimizer = DDPOptimizer( bucket_bytes_cap=ddp_module.bucket_bytes_cap, backend_compile_fn=callback._torchdynamo_orig_callable, ) hijacked_callback = convert_frame.convert_frame( ddp_optimizer.compile_fn, hooks=hooks, ) return hijacked_callback(frame, cache_size, hooks) with compile_lock: return callback(frame, cache_size, hooks) catch_errors._torchdynamo_orig_callable = callback # type: ignore[attr-defined] return catch_errors def _optimize_catch_errors( compile_fn, hooks: Hooks, backend_ctx_ctor=null_context, export=False, dynamic=False ): return OptimizeContext( catch_errors_wrapper(compile_fn, hooks), backend_ctx_ctor=backend_ctx_ctor, first_ctx=True, export=export, dynamic=dynamic, ) def get_compiler_fn(compiler_fn): from .debug_utils import wrap_backend_debug if hasattr(compiler_fn, "compiler_name"): compiler_str = compiler_fn.compiler_name elif isinstance(compiler_fn, str): compiler_str = compiler_fn else: compiler_str = None compiler_fn = lookup_backend(compiler_fn) return wrap_backend_debug(compiler_fn, compiler_str) class _NullDecorator(contextlib.nullcontext): # type: ignore[type-arg] def __call__(self, fn): assert callable(fn) return fn def check_if_dynamo_supported(): if sys.platform == "win32": raise RuntimeError("Windows not yet supported for torch.compile") if sys.version_info >= (3, 12): raise RuntimeError("Python 3.12+ not yet supported for torch.compile") elif sys.version_info >= (3, 11): warnings.warn( "torch.compile support of Python 3.11 is experimental. " "Program may generate incorrect results or segfault." ) def is_dynamo_supported(): try: check_if_dynamo_supported() return True except Exception: return False def optimize( backend="inductor", *, nopython=False, guard_export_fn=None, guard_fail_fn=None, disable=False, dynamic=False, ): """ The main entrypoint of TorchDynamo. Do graph capture and call backend() to optimize extracted graphs. Args: backend: One of the two things: - Either, a function/callable taking a torch.fx.GraphModule and example_inputs and returning a python callable that runs the graph faster. One can also provide additional context for the backend, like torch.jit.fuser("fuser2"), by setting the backend_ctx_ctor attribute. See AOTAutogradMemoryEfficientFusionWithContext for the usage. - Or, a string backend name in `torch._dynamo.list_backends()` nopython: If True, graph breaks will be errors and there will be a single whole-program graph. disable: If True, turn this decorator into a no-op dynamic: If True, turn on dynamic shapes support Example Usage:: @torch._dynamo.optimize() def toy_example(a, b): ... """ check_if_dynamo_supported() # Note: The hooks object could be global instead of passed around, *however* that would make # for a confusing API usage and plumbing story wherein we nest multiple .optimize calls. # There is some prior art around this, w/r/t nesting backend calls are enforced to be the same # compiler, however, this feels onerous for callback and hooks, and it feels better to give our users an # easier to understand UX at the cost of a little more plumbing on our end. hooks = Hooks(guard_export_fn=guard_export_fn, guard_fail_fn=guard_fail_fn) torch._C._log_api_usage_once("torch._dynamo.optimize") if disable or os.environ.get("TORCHDYNAMO_DISABLE", "") == "1": return _NullDecorator() backend = get_compiler_fn(backend) # Find if backend has any extra context manager backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context) if nopython: return optimize_assert( backend, dynamic=dynamic, hooks=hooks, ) return _optimize_catch_errors( convert_frame.convert_frame(backend, hooks=hooks), hooks, backend_ctx_ctor, dynamic=dynamic, ) # TODO(voz): Consider making "explain" output alongside a run / part of a run @patch("torch._dynamo.symbolic_convert.explain", True) def explain(f, *args, **kwargs): # TODO(voz): Do we want a decorator for this? from . import reset reset() out_guards = [] graphs = [] ops_per_graph = [] op_count = 0 break_reasons = [] def dynamo_graph_accumulating_compiler(gm: torch.fx.GraphModule, example_inputs): nonlocal graphs nonlocal op_count nonlocal ops_per_graph graphs.append(gm) ops = [] for node in gm.graph.nodes: if node.op == "call_function": ops.append(node.target) op_count += len(ops) ops_per_graph.append(ops) if gm.compile_subgraph_reason.graph_break: break_reasons.append(gm.compile_subgraph_reason) return gm.forward def guard_export_print(guards): nonlocal out_guards out_guards.append(guards) with patch(f"{__name__}.most_recent_backend", None): opt_f = optimize( dynamo_graph_accumulating_compiler, nopython=False, guard_export_fn=guard_export_print, )(f) # TODO(voz): We may have instances of `f` that mutate inputs, we should track sideffects and reject. opt_f(*args, **kwargs) graph_count = len(graphs) # For the explanation summary, dedupe reasons by the innermost stack frame and dedupe by it. deduped_reasons = {} for reason in break_reasons: innermost_frame = reason.user_stack[-1] # __repr__ uniquely identifies a FrameSummary so we can use it for deduping deduped_reasons[repr(innermost_frame)] = reason formatted_list = "" for idx, break_reason in enumerate(deduped_reasons.values()): formatted_stack = "".join(traceback.format_list(break_reason.user_stack)) msg = f"{break_reason.reason}\n{formatted_stack}" formatted_list += f"{idx + 1}. {msg} \n" explanation = f"Dynamo produced {graph_count} graphs " explanation += f"with {graph_count - 1} graph break and {op_count} ops" explanation_verbose = explanation explanation_verbose += f"\n Break reasons: \n\n{formatted_list}" explanation_verbose += compile_times() # TODO(voz): Do we want a decorator for this? reset() return ( explanation, out_guards, graphs, ops_per_graph, break_reasons, explanation_verbose, ) @dataclasses.dataclass class Constraint: """ This represents constraints on input tensor dimensions, e.g., requiring them to be fully polymorphic or within some range. Don't create this class directly; instead, use :func:`torch._export.dynamic_dim`. """ w_tensor: weakref.ReferenceType[torch.Tensor] # TODO: We don't need t_id; we can get it off of w_tensor t_id: int dim: int constraint_range: Optional[ torch.fx.experimental.symbolic_shapes.StrictMinMaxConstraint ] def export( f: Callable[..., Any], *args, aten_graph: bool = False, decomposition_table: Optional[ Dict[torch._ops.OpOverload, Callable[..., Any]] ] = None, tracing_mode: str = "real", constraints: List[Constraint] = None, **kwargs, ) -> Tuple[torch.fx.GraphModule, Set[_guards.Guard]]: """ Export an input function f to a format that can be executed outside of PyTorch using the FX graph. Args: f (callable): A PyTorch function to be exported. *args: Variable length argument list to be passed to the function f. aten_graph (bool): If True, exports a graph with ATen operators. If False, exports a graph with Python operators. Default is False. decomposition_table (dict): A dictionary that maps operators to their decomposition functions. Required if aten_graph or tracing_mode is specified. Default is None. tracing_mode (str): Specifies the tracing mode. Must be set to "real" if decomposition_table is not specified. If decomposition_table is specified, the options are "symbolic" or "fake". Default is "real". **kwargs: Arbitrary keyword arguments to be passed to the function f. Returns: A tuple of (graph, guards) Graph: An FX graph representing the execution of the input PyTorch function with the provided arguments and options. Guards: The guards we accumulated during tracing f above Raises: AssertionError: If decomposition_table or tracing_mode is specified without setting aten_graph=True, or if graph breaks during tracing in export. AssertionError: If Dynamo input and output is not consistent with traced input/output. Note - this headerdoc was authored by ChatGPT, with slight modifications by the author. """ check_if_dynamo_supported() torch._C._log_api_usage_once("torch._dynamo.export") if decomposition_table is not None or tracing_mode != "real": assert ( aten_graph ), "Specifying a decomposition_table table or tracing mode is illegal without setting aten_graph=True" f = innermost_fn(f) graph = None out_guards = None graph_captured_input = None example_fake_inputs = [] graph_captured_result: Optional[Tuple[torch.Tensor, ...]] = None def produce_matching(source_args, candidate_args): matched_elements_positions = [] dict_of_source_args = dict() for i in range(0, len(source_args)): element_id = id(source_args[i]) dict_of_source_args[element_id] = i for i in range(0, len(candidate_args)): arg = candidate_args[i] # 1-element tensor arg can be unspec int/float if isinstance(arg, torch.Tensor) and torch.numel(arg) == 1: if id(arg) in dict_of_source_args: matched_elements_positions.append(dict_of_source_args[id(arg)]) elif id(arg.item()) in dict_of_source_args: matched_elements_positions.append( dict_of_source_args[id(arg.item())] ) else: raise AssertionError( "Dynamo input/output is not consistent with traced input/output" ) else: assert ( id(arg) in dict_of_source_args ), "Dynamo input and output is a strict subset of traced input/output" matched_elements_positions.append(dict_of_source_args[id(arg)]) return matched_elements_positions def guard_export_print(guards: Set[_guards.Guard]): nonlocal out_guards assert out_guards is None, "whole graph export entails exactly one guard export" out_guards = guards def dynamo_normalization_capturing_compiler( gm: torch.fx.GraphModule, example_inputs ): nonlocal graph assert ( graph is None ), "Tried to emit a second graph during export. Tracing through 'f' must produce a single graph." graph = gm nonlocal example_fake_inputs example_fake_inputs = example_inputs def result_capturing_wrapper(*graph_inputs): nonlocal graph_captured_result nonlocal graph_captured_input graph_captured_input = graph_inputs assert graph is not None graph_captured_result = graph(*graph_inputs) return graph_captured_result return result_capturing_wrapper flat_args, in_spec = pytree.tree_flatten((args, kwargs)) remove_from_cache(f) with patch(f"{__name__}.most_recent_backend", None), config.patch( specialize_int=True ): opt_f = optimize_assert( dynamo_normalization_capturing_compiler, hooks=Hooks( guard_export_fn=guard_export_print, guard_fail_fn=None, ), export=True, export_constraints=constraints, dynamic=(tracing_mode == "symbolic"), )(f) # TODO(voz): We may have instances of `f` that mutate inputs, we should track sideffects and reject. result_traced = opt_f(*args, **kwargs) remove_from_cache(f) assert ( graph is not None ), "Failed to produce a graph during tracing. Tracing through 'f' must produce a single graph." assert out_guards is not None, "Failed to produce guards during tracing" matched_input_elements_positions = produce_matching(flat_args, graph_captured_input) flat_results_traced, out_spec_traced = pytree.tree_flatten(result_traced) assert graph_captured_result is not None flat_both = list(graph_captured_result) + flat_args matched_output_elements_positions = produce_matching(flat_both, flat_results_traced) class ChangeInputOutputSignature(torch.fx.interpreter.Transformer): def __init__( self, m, ): super().__init__(m) arg_len = len(flat_args) self.new_args = [ super(ChangeInputOutputSignature, self).placeholder(f"arg{i}", (), {}) for i in range(0, arg_len) ] self.old_args_gen = ( self.new_args[i] for i in matched_input_elements_positions ) def placeholder(self, target, args, kwargs): arg = next(self.old_args_gen) if "val" in self.current_node.meta: arg.node.meta["val"] = self.current_node.meta["val"] if "tensor_dict" in self.current_node.meta: arg.node.meta["tensor_dict"] = self.current_node.meta["tensor_dict"] return arg def output(self, target, args, kwargs): dynamo_result_flat = args[0] lookup = [*dynamo_result_flat, *self.new_args] new_result_flat = [lookup[i] for i in matched_output_elements_positions] return super().output(target, (new_result_flat,), {}) def run_node(self, n): self.current_node = n r = super().run_node(n) if "val" in self.current_node.meta: r.node.meta["val"] = self.current_node.meta["val"] return r if aten_graph: # Running graph with interpreter is needed for propagating the stack_trace def graph_with_interpreter(*args): with torch.fx.traceback.preserve_node_meta(): return torch.fx.Interpreter(graph).run(*args) fake_tensor_mode = null_context() for val in example_fake_inputs: if isinstance(val, FakeTensor): fake_tensor_mode = val.fake_mode break with enable_python_dispatcher(), fake_tensor_mode: graph = make_fx( graph_with_interpreter, decomposition_table=decomposition_table, tracing_mode="real", _allow_non_fake_inputs=True, )(*example_fake_inputs) new_graph = ChangeInputOutputSignature( graph, ).transform() def signature_to_fullargspec(sig: inspect.Signature): # Get a list of Parameter objects from the Signature object params = list(sig.parameters.values()) # Separate positional arguments, keyword-only arguments and varargs/varkw args = [ p.name for p in params if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD ] kwonlyargs = [ p.name for p in params if p.kind == inspect.Parameter.KEYWORD_ONLY ] varargs = next( (p.name for p in params if p.kind == inspect.Parameter.VAR_POSITIONAL), None ) varkw = next( (p.name for p in params if p.kind == inspect.Parameter.VAR_KEYWORD), None ) # Get default values for positional arguments and keyword-only arguments defaults = tuple( p.default for p in params if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and p.default is not inspect.Parameter.empty ) kwonlydefaults = { p.name: p.default for p in params if p.kind == inspect.Parameter.KEYWORD_ONLY and p.default is not inspect.Parameter.empty } # Get annotations for parameters and return value annotations = {} if sig.return_annotation: annotations = {"return": sig.return_annotation} for parameter in params: annotations[parameter.name] = parameter.annotation # Return a FullArgSpec object with the extracted attributes return inspect.FullArgSpec( args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations ) # Make dynamo graph to have same input/output spec as user code def argument_names(f: Callable[..., Any], *args, **kwargs) -> List[str]: call_to_inspect = f.forward if isinstance(f, torch.nn.Module) else f sig = inspect.signature(call_to_inspect) fullargspec = signature_to_fullargspec(sig) # 1. Map `args` 1-to-1 to positional arguments in original signature. input_strs = fullargspec.args[: len(args)] if len(args) > len(fullargspec.args): # 2. If there are more arguments left in `args`, they map to varargs in original # signature. Assign names as {varargs}_0, {varargs}_1, ... assert fullargspec.varargs is not None, "More arguments than expected" input_strs += [ f"{fullargspec.varargs}_{i}" for i in range(0, len(args) - len(input_strs)) ] elif len(args) < len(fullargspec.args): # 3. If there are fewer arguments in `args` than `fullargspec.args`, # it implies these are arguments either with default values, or provided in # `kwargs`. The former can be safely ignored. Because Dynamo.export does not # export them as part of the function signature. The latter will be handled # in the next step. for unprovided_arg in fullargspec.args[ len(args) : -len(fullargspec.defaults or []) ]: assert unprovided_arg in kwargs, f"Missing argument {unprovided_arg}" # 4. Keyword arguments provided in `kwargs`. input_strs += list(kwargs.keys()) # 5. Keyword-only arguments with default values if not provided are not exported # as part of the function signature. for kwonly_arg in fullargspec.kwonlyargs: kwonlydefaults = fullargspec.kwonlydefaults or {} assert ( kwonly_arg in kwargs or kwonly_arg in kwonlydefaults ), f"Missing keyword only argument {kwonly_arg}" return input_strs new_graph.graph._codegen = _PyTreeCodeGen( _PyTreeInfo( argument_names(f, *args, **kwargs), in_spec, out_spec_traced, ) ) new_graph.recompile() # TODO remove this once Executorch uses proper functionalization new_graph._example_fake_inputs = example_fake_inputs new_graph._matched_input_elements_positions = matched_input_elements_positions return (new_graph, out_guards) def assume_constant_result(fn): fn._dynamo_marked_constant = True return fn def optimize_assert( backend, *, hooks=Hooks(None, None), export=False, export_constraints=None, dynamic=False, ): """ The same as `torch._dynamo.optimize(backend, nopython=True)` """ backend = get_compiler_fn(backend) # Find if backend has any extra context manager backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context) return _optimize_catch_errors( convert_frame.convert_frame_assert( backend, export=export, export_constraints=export_constraints ), hooks, backend_ctx_ctor, export=export, dynamic=dynamic, ) def run(fn=None): """Don't do any dynamic compiles, just use prior optimizations""" if fn is not None: fn = innermost_fn(fn) assert callable(fn) return RunOnlyContext()(fn) return RunOnlyContext() def disable(fn=None): """Decorator and context manager to disable TorchDynamo""" if fn is not None: fn = innermost_fn(fn) assert callable(fn) return DisableContext()(fn) return DisableContext() def skip(fn=None): """ Skip frames associated with the function code, but still process recursively invoked frames """ if fn is None: return skip fn = innermost_fn(fn) assert callable(fn) skip_code(fn.__code__) fn._torchdynamo_disable = True return fn class TorchPatcher: @staticmethod @functools.lru_cache(None) def patch(): # Disable TorchDynamo on some torch.* compilers generated frames torch.jit.trace = disable(torch.jit.trace) torch.jit.trace_module = disable(torch.jit.trace_module) torch.jit._get_trace_graph = disable(torch.jit._get_trace_graph) # symbolic_trace creates new frames. We disable Dynamo on such frames torch.fx._symbolic_trace.Tracer.trace = disable( torch.fx._symbolic_trace.Tracer.trace ) torch.onnx.export_to_pretty_string = disable(torch.onnx.export_to_pretty_string) torch.distributions.Distribution.set_default_validate_args(False) proxy_tensor.dispatch_trace = disable(proxy_tensor.dispatch_trace) optimizers = [ opt for opt in torch.optim.__dict__.values() if inspect.isclass(opt) and issubclass(opt, torch.optim.Optimizer) ] # disable dynamo for the wrapper that helps give dynamo hints about entering DDP if hasattr(DistributedDataParallel, "_inside_ddp_forward"): DistributedDataParallel._inside_ddp_forward = skip( DistributedDataParallel._inside_ddp_forward ) from ..optim import adagrad, adam, adamax, adamw, asgd, nadam, sgd for opt_mod in adagrad, adam, adamax, adamw, asgd, nadam, sgd: multi_tensor_fn_name = f"_multi_tensor_{opt_mod.__name__.split('.')[-1]}" if hasattr(opt_mod, multi_tensor_fn_name): setattr( opt_mod, multi_tensor_fn_name, disable(getattr(opt_mod, multi_tensor_fn_name)), ) excluded_opts = {torch.optim.SparseAdam, torch.optim.RAdam, torch.optim.LBFGS} for opt in optimizers: if opt in excluded_opts: opt.step = disable(opt.step) opt._cuda_graph_capture_health_check = disable( opt._cuda_graph_capture_health_check ) opt.zero_grad = disable(opt.zero_grad) if hasattr(opt, "_init_group"): opt._init_group = disable(opt._init_group) # disable any currently set hooks # Note: we only want to disable the profiling hook # which is the *last* hook applied, we want to keep the no_grad hook hooked = getattr(opt.step, "hooked", False) if hooked: unwrapped_step = getattr(opt.step, "__wrapped__", None) if unwrapped_step: opt.step = unwrapped_step # disable future hooking opt.step.hooked = True @staticmethod def suppress_torch_distributed_warnings(fn): def inner_fn(*args, **kwargs): warnings.filterwarnings( "ignore", category=UserWarning, module="torch.distributed" ) return fn(*args, **kwargs) return inner_fn