from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .. import functional as F from ...modules.module import Module class ReLU(Module): r"""Applies quantized rectified linear unit function element-wise: :math:`\text{ReLU}(x)= \max(x_0, x)`, where :math:`x_0` is the zero point. Please see https://pytorch.org/docs/stable/nn.html#torch.nn.ReLU for more documentation on ReLU. Args: inplace: (Currently not supported) can optionally do the operation in-place. Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input Examples:: >>> m = nn.quantized.ReLU() >>> input = torch.randn(2) >>> input = torch.quantize_linear(input, 1.0, 0, dtype=torch.qint32) >>> output = m(input) """ def __init__(self, inplace=False): super(ReLU, self).__init__(inplace) assert not inplace, 'torch.nn.quantized.ReLU does not support inplace' def forward(self, input): return F.relu(input) @staticmethod def from_float(mod): return ReLU(mod.inplace)