// @lint-ignore-every CLANGTIDY HOWTOEVEN #include #include #include #include "test_utils.h" using namespace caffe2; using namespace torch; using namespace torch::jit; using namespace torch::jit::test; using c10::IValue; TEST(StaticRuntime, autogen_sgn) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::sgn(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_acos) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::acos(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_addmv) { const std::string script = R"IR( graph(%self: Tensor, %mat: Tensor, %vec: Tensor, %beta: int, %alpha: int): %bias: None = prim::Constant() %ret = aten::addmv(%self, %mat, %vec, %beta, %alpha) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({2}); auto mat0 = at::rand({2, 2}); auto vec0 = at::rand({2}); auto beta0 = 2; auto alpha0 = 2; std::vector args{self0, mat0, vec0, beta0, alpha0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({35}); auto mat1 = at::rand({35, 35}); auto vec1 = at::rand({35}); auto beta1 = 2; auto alpha1 = 2; std::vector args2{self1, mat1, vec1, beta1, alpha1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_argmax) { const std::string script = R"IR( graph(%self: Tensor, %dim: int?, %keepdim: bool): %bias: None = prim::Constant() %ret = aten::argmax(%self, %dim, %keepdim) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto dim0 = 1; auto keepdim0 = false; std::vector args{self0, dim0, keepdim0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto dim1 = 1; auto keepdim1 = false; std::vector args2{self1, dim1, keepdim1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_acosh) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::acosh(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({2, 2, 2}) + at::ones({2, 2, 2}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({5, 5, 5}) + at::ones({5, 5, 5}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_asinh) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::asinh(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_atanh) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::atanh(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_asin) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::asin(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_atan) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::atan(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_baddbmm) { const std::string script = R"IR( graph(%self: Tensor, %batch1: Tensor, %batch2: Tensor, %beta: int, %alpha: int): %bias: None = prim::Constant() %ret = aten::baddbmm(%self, %batch1, %batch2, %beta, %alpha) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto batch10 = at::rand({6, 6, 6}); auto batch20 = at::rand({6, 6, 6}); auto beta0 = 2; auto alpha0 = 2; std::vector args{self0, batch10, batch20, beta0, alpha0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto batch11 = at::rand({22, 22, 22}); auto batch21 = at::rand({22, 22, 22}); auto beta1 = 2; auto alpha1 = 2; std::vector args2{self1, batch11, batch21, beta1, alpha1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_bitwise_not) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::bitwise_not(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_copysign_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::copysign(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_ceil) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::ceil(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_cos) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::cos(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_cosh) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::cosh(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_cumprod) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %dtype: int?): %bias: None = prim::Constant() %ret = aten::cumprod(%self, %dim, %dtype) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto dim0 = 1; auto dtype0 = at::ScalarType::Float; std::vector args{self0, dim0, dtype0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto dim1 = 1; auto dtype1 = at::ScalarType::Float; std::vector args2{self1, dim1, dtype1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_erf) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::erf(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_erfc) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::erfc(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_exp) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::exp(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_exp2) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::exp2(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_expm1) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::expm1(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_floor) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::floor(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_frac) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::frac(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_gcd) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::gcd(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_lcm) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::lcm(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_index_copy) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %source: Tensor): %bias: None = prim::Constant() %ret = aten::index_copy(%self, %dim, %index, %source) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({2}); auto dim0 = 0; auto index0 = at::randint(0, 1, {2}, at::kLong); auto source0 = at::rand({2}); std::vector args{self0, dim0, index0, source0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({32}); auto dim1 = 0; auto index1 = at::randint(0, 10, {32}, at::kLong); auto source1 = at::rand({32}); std::vector args2{self1, dim1, index1, source1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_isin_Tensor_Tensor) { const std::string script = R"IR( graph(%elements: Tensor, %test_elements: Tensor, %assume_unique: bool, %invert: bool): %bias: None = prim::Constant() %ret = aten::isin(%elements, %test_elements, %assume_unique, %invert) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto elements0 = at::rand({6, 6, 6}); auto test_elements0 = at::rand({6, 6, 6}); auto assume_unique0 = false; auto invert0 = false; std::vector args{elements0, test_elements0, assume_unique0, invert0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto elements1 = at::rand({22, 22, 22}); auto test_elements1 = at::rand({22, 22, 22}); auto assume_unique1 = false; auto invert1 = false; std::vector args2{elements1, test_elements1, assume_unique1, invert1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_isin_Tensor_Scalar) { const std::string script = R"IR( graph(%elements: Tensor, %test_element: int, %assume_unique: bool, %invert: bool): %bias: None = prim::Constant() %ret = aten::isin(%elements, %test_element, %assume_unique, %invert) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto elements0 = at::rand({6, 6, 6}); auto test_element0 = 2; auto assume_unique0 = false; auto invert0 = false; std::vector args{elements0, test_element0, assume_unique0, invert0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto elements1 = at::rand({22, 22, 22}); auto test_element1 = 2; auto assume_unique1 = false; auto invert1 = false; std::vector args2{elements1, test_element1, assume_unique1, invert1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_isin_Scalar_Tensor) { const std::string script = R"IR( graph(%element: int, %test_elements: Tensor, %assume_unique: bool, %invert: bool): %bias: None = prim::Constant() %ret = aten::isin(%element, %test_elements, %assume_unique, %invert) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto element0 = 2; auto test_elements0 = at::rand({6, 6, 6}); auto assume_unique0 = false; auto invert0 = false; std::vector args{element0, test_elements0, assume_unique0, invert0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/false); auto element1 = 2; auto test_elements1 = at::rand({22, 22, 22}); auto assume_unique1 = false; auto invert1 = false; std::vector args2{element1, test_elements1, assume_unique1, invert1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/false); } TEST(StaticRuntime, autogen_log10) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::log10(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_log1p) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::log1p(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_log2) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::log2(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_logaddexp) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::logaddexp(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_logaddexp2) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::logaddexp2(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_xlogy_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::xlogy(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen__log_softmax) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %half_to_float: bool): %bias: None = prim::Constant() %ret = aten::_log_softmax(%self, %dim, %half_to_float) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto dim0 = 1; auto half_to_float0 = false; std::vector args{self0, dim0, half_to_float0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto dim1 = 1; auto half_to_float1 = false; std::vector args2{self1, dim1, half_to_float1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen__log_softmax_backward_data) { const std::string script = R"IR( graph(%grad_output: Tensor, %output: Tensor, %dim: int, %input_dtype: int): %bias: None = prim::Constant() %ret = aten::_log_softmax_backward_data(%grad_output, %output, %dim, %input_dtype) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto output0 = at::rand({6, 6, 6}); auto dim0 = 1; auto input_dtype0 = at::ScalarType::Float; std::vector args{grad_output0, output0, dim0, input_dtype0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto output1 = at::rand({22, 22, 22}); auto dim1 = 1; auto input_dtype1 = at::ScalarType::Float; std::vector args2{grad_output1, output1, dim1, input_dtype1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_mm) { const std::string script = R"IR( graph(%self: Tensor, %mat2: Tensor): %bias: None = prim::Constant() %ret = aten::mm(%self, %mat2) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({8, 8}); auto mat20 = at::rand({8, 8}); std::vector args{self0, mat20}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({32, 32}); auto mat21 = at::rand({32, 32}); std::vector args2{self1, mat21}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_reciprocal) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::reciprocal(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_neg) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::neg(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_round) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::round(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_round_decimals) { const std::string script = R"IR( graph(%self: Tensor, %decimals: int): %bias: None = prim::Constant() %ret = aten::round(%self, %decimals) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto decimals0 = 1; std::vector args{self0, decimals0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto decimals1 = 1; std::vector args2{self1, decimals1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_gelu) { const std::string script = R"IR( graph(%self: Tensor, %approximate: str): %bias: None = prim::Constant() %ret = aten::gelu(%self, %approximate) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto approximate0 = "tanh"; std::vector args{self0, approximate0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto approximate1 = "tanh"; std::vector args2{self1, approximate1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_gelu_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %approximate: str): %bias: None = prim::Constant() %ret = aten::gelu_backward(%grad_output, %self, %approximate) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); auto approximate0 = "tanh"; std::vector args{grad_output0, self0, approximate0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); auto approximate1 = "tanh"; std::vector args2{grad_output1, self1, approximate1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_hardshrink) { const std::string script = R"IR( graph(%self: Tensor, %lambd: int): %bias: None = prim::Constant() %ret = aten::hardshrink(%self, %lambd) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto lambd0 = 2; std::vector args{self0, lambd0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto lambd1 = 2; std::vector args2{self1, lambd1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_hardshrink_backward) { const std::string script = R"IR( graph(%grad_out: Tensor, %self: Tensor, %lambd: int): %bias: None = prim::Constant() %ret = aten::hardshrink_backward(%grad_out, %self, %lambd) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_out0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); auto lambd0 = 2; std::vector args{grad_out0, self0, lambd0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_out1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); auto lambd1 = 2; std::vector args2{grad_out1, self1, lambd1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_rsqrt) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::rsqrt(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_silu) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::silu(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_silu_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor): %bias: None = prim::Constant() %ret = aten::silu_backward(%grad_output, %self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); std::vector args{grad_output0, self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); std::vector args2{grad_output1, self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_mish) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::mish(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_sin) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::sin(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_sinc) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::sinc(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_sinh) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::sinh(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen__softmax) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %half_to_float: bool): %bias: None = prim::Constant() %ret = aten::_softmax(%self, %dim, %half_to_float) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto dim0 = 1; auto half_to_float0 = false; std::vector args{self0, dim0, half_to_float0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto dim1 = 1; auto half_to_float1 = false; std::vector args2{self1, dim1, half_to_float1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen__softmax_backward_data) { const std::string script = R"IR( graph(%grad_output: Tensor, %output: Tensor, %dim: int, %input_dtype: int): %bias: None = prim::Constant() %ret = aten::_softmax_backward_data(%grad_output, %output, %dim, %input_dtype) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto output0 = at::rand({6, 6, 6}); auto dim0 = 1; auto input_dtype0 = at::ScalarType::Float; std::vector args{grad_output0, output0, dim0, input_dtype0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto output1 = at::rand({22, 22, 22}); auto dim1 = 1; auto input_dtype1 = at::ScalarType::Float; std::vector args2{grad_output1, output1, dim1, input_dtype1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_sqrt) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::sqrt(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_prod_dim_int) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %keepdim: bool, %dtype: int?): %bias: None = prim::Constant() %ret = aten::prod(%self, %dim, %keepdim, %dtype) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto dim0 = 1; auto keepdim0 = false; auto dtype0 = at::ScalarType::Float; std::vector args{self0, dim0, keepdim0, dtype0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto dim1 = 1; auto keepdim1 = false; auto dtype1 = at::ScalarType::Float; std::vector args2{self1, dim1, keepdim1, dtype1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_tan) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::tan(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_threshold) { const std::string script = R"IR( graph(%self: Tensor, %threshold: int, %value: int): %bias: None = prim::Constant() %ret = aten::threshold(%self, %threshold, %value) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto threshold0 = 2; auto value0 = 2; std::vector args{self0, threshold0, value0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto threshold1 = 2; auto value1 = 2; std::vector args2{self1, threshold1, value1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_threshold_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %threshold: int): %bias: None = prim::Constant() %ret = aten::threshold_backward(%grad_output, %self, %threshold) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); auto threshold0 = 2; std::vector args{grad_output0, self0, threshold0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); auto threshold1 = 2; std::vector args2{grad_output1, self1, threshold1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_trunc) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::trunc(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_heaviside) { const std::string script = R"IR( graph(%self: Tensor, %values: Tensor): %bias: None = prim::Constant() %ret = aten::heaviside(%self, %values) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto values0 = at::rand({6, 6, 6}); std::vector args{self0, values0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto values1 = at::rand({22, 22, 22}); std::vector args2{self1, values1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_index_add) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %source: Tensor, %alpha: int): %bias: None = prim::Constant() %ret = aten::index_add(%self, %dim, %index, %source, %alpha) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({2}); auto dim0 = 0; auto index0 = at::randint(0, 1, {2}, at::kInt); auto source0 = at::rand({2}); auto alpha0 = 2; std::vector args{self0, dim0, index0, source0, alpha0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/false); auto self1 = at::rand({16}); auto dim1 = 0; auto index1 = at::randint(0, 10, {16}, at::kInt); auto source1 = at::rand({16}); auto alpha1 = 2; std::vector args2{self1, dim1, index1, source1, alpha1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/false); } TEST(StaticRuntime, autogen_scatter_src) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor): %bias: None = prim::Constant() %ret = aten::scatter(%self, %dim, %index, %src) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); auto dim0 = 1; auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); std::vector args{self0, dim0, index0, src0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); auto dim1 = 1; auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); std::vector args2{self1, dim1, index1, src1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_scatter_value) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %value: int): %bias: None = prim::Constant() %ret = aten::scatter(%self, %dim, %index, %value) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); auto dim0 = 1; auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); auto value0 = 2; auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); std::vector args{self0, dim0, index0, value0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); auto dim1 = 1; auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); auto value1 = 2; auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); std::vector args2{self1, dim1, index1, value1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_scatter_reduce) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor, %reduce: str): %bias: None = prim::Constant() %ret = aten::scatter(%self, %dim, %index, %src, %reduce) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); auto dim0 = 1; auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); auto reduce0 = "add"; std::vector args{self0, dim0, index0, src0, reduce0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); auto dim1 = 1; auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); auto reduce1 = "add"; std::vector args2{self1, dim1, index1, src1, reduce1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_scatter_value_reduce) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %value: int, %reduce: str): %bias: None = prim::Constant() %ret = aten::scatter(%self, %dim, %index, %value, %reduce) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); auto dim0 = 1; auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); auto value0 = 2; auto reduce0 = "add"; auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); std::vector args{self0, dim0, index0, value0, reduce0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); auto dim1 = 1; auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); auto value1 = 2; auto reduce1 = "add"; auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); std::vector args2{self1, dim1, index1, value1, reduce1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_scatter_add) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor): %bias: None = prim::Constant() %ret = aten::scatter_add(%self, %dim, %index, %src) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); auto dim0 = 1; auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); std::vector args{self0, dim0, index0, src0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); auto dim1 = 1; auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); std::vector args2{self1, dim1, index1, src1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_eq_Scalar) { const std::string script = R"IR( graph(%self: Tensor, %other: int): %bias: None = prim::Constant() %ret = aten::eq(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = 2; std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = 2; std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_eq_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::eq(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_bitwise_and_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::bitwise_and(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_bitwise_or_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::bitwise_or(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_bitwise_xor_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::bitwise_xor(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_bitwise_left_shift_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::bitwise_left_shift(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_bitwise_right_shift_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::bitwise_right_shift(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_tril) { const std::string script = R"IR( graph(%self: Tensor, %diagonal: int): %bias: None = prim::Constant() %ret = aten::tril(%self, %diagonal) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto diagonal0 = 1; std::vector args{self0, diagonal0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto diagonal1 = 1; std::vector args2{self1, diagonal1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_triu) { const std::string script = R"IR( graph(%self: Tensor, %diagonal: int): %bias: None = prim::Constant() %ret = aten::triu(%self, %diagonal) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto diagonal0 = 1; std::vector args{self0, diagonal0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto diagonal1 = 1; std::vector args2{self1, diagonal1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_digamma) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::digamma(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_lerp_Scalar) { const std::string script = R"IR( graph(%self: Tensor, %end: Tensor, %weight: int): %bias: None = prim::Constant() %ret = aten::lerp(%self, %end, %weight) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto end0 = at::rand({6, 6, 6}); auto weight0 = 2; std::vector args{self0, end0, weight0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto end1 = at::rand({22, 22, 22}); auto weight1 = 2; std::vector args2{self1, end1, weight1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_lerp_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %end: Tensor, %weight: Tensor): %bias: None = prim::Constant() %ret = aten::lerp(%self, %end, %weight) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto end0 = at::rand({6, 6, 6}); auto weight0 = at::rand({6, 6, 6}); std::vector args{self0, end0, weight0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto end1 = at::rand({22, 22, 22}); auto weight1 = at::rand({22, 22, 22}); std::vector args2{self1, end1, weight1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_ne_Scalar) { const std::string script = R"IR( graph(%self: Tensor, %other: int): %bias: None = prim::Constant() %ret = aten::ne(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = 2; std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = 2; std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_ne_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::ne(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_ge_Scalar) { const std::string script = R"IR( graph(%self: Tensor, %other: int): %bias: None = prim::Constant() %ret = aten::ge(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = 2; std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = 2; std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_ge_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::ge(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_le_Scalar) { const std::string script = R"IR( graph(%self: Tensor, %other: int): %bias: None = prim::Constant() %ret = aten::le(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = 2; std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = 2; std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_le_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::le(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_gt_Scalar) { const std::string script = R"IR( graph(%self: Tensor, %other: int): %bias: None = prim::Constant() %ret = aten::gt(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = 2; std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = 2; std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_gt_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::gt(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_lt_Scalar) { const std::string script = R"IR( graph(%self: Tensor, %other: int): %bias: None = prim::Constant() %ret = aten::lt(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = 2; std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = 2; std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_lt_Tensor) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::lt(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_gather) { const std::string script = R"IR( graph(%self: Tensor, %dim: int, %index: Tensor, %sparse_grad: bool): %bias: None = prim::Constant() %ret = aten::gather(%self, %dim, %index, %sparse_grad) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(1, 100, {2, 2, 2}, at::kInt); auto dim0 = 1; auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); auto sparse_grad0 = false; std::vector args{self0, dim0, index0, sparse_grad0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(1, 100, {5, 5, 5}, at::kInt); auto dim1 = 1; auto index1 = at::randint(0, 4, {5, 5, 5}, torch::kInt64); auto sparse_grad1 = false; std::vector args2{self1, dim1, index1, sparse_grad1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_addcmul) { const std::string script = R"IR( graph(%self: Tensor, %tensor1: Tensor, %tensor2: Tensor, %value: int): %bias: None = prim::Constant() %ret = aten::addcmul(%self, %tensor1, %tensor2, %value) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto tensor10 = at::rand({6, 6, 6}); auto tensor20 = at::rand({6, 6, 6}); auto value0 = 2; std::vector args{self0, tensor10, tensor20, value0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto tensor11 = at::rand({22, 22, 22}); auto tensor21 = at::rand({22, 22, 22}); auto value1 = 2; std::vector args2{self1, tensor11, tensor21, value1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_addcdiv) { const std::string script = R"IR( graph(%self: Tensor, %tensor1: Tensor, %tensor2: Tensor, %value: int): %bias: None = prim::Constant() %ret = aten::addcdiv(%self, %tensor1, %tensor2, %value) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto tensor10 = at::rand({6, 6, 6}); auto tensor20 = at::rand({6, 6, 6}); auto value0 = 2; std::vector args{self0, tensor10, tensor20, value0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto tensor11 = at::rand({22, 22, 22}); auto tensor21 = at::rand({22, 22, 22}); auto value1 = 2; std::vector args2{self1, tensor11, tensor21, value1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_lgamma) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::lgamma(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_polygamma) { const std::string script = R"IR( graph(%n: int, %self: Tensor): %bias: None = prim::Constant() %ret = aten::polygamma(%n, %self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto n0 = 1; auto self0 = at::rand({6, 6, 6}); std::vector args{n0, self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto n1 = 1; auto self1 = at::rand({22, 22, 22}); std::vector args2{n1, self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_erfinv) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::erfinv(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_i0) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::i0(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_signbit) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::signbit(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_atan2) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::atan2(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_hypot) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::hypot(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_igamma) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::igamma(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_igammac) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::igammac(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_nextafter) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::nextafter(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_fmin) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::fmin(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_fmax) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::fmax(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_maximum) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::maximum(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_minimum) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::minimum(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_renorm) { const std::string script = R"IR( graph(%self: Tensor, %p: int, %dim: int, %maxnorm: int): %bias: None = prim::Constant() %ret = aten::renorm(%self, %p, %dim, %maxnorm) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto p0 = 2; auto dim0 = 1; auto maxnorm0 = 2; std::vector args{self0, p0, dim0, maxnorm0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto p1 = 2; auto dim1 = 1; auto maxnorm1 = 2; std::vector args2{self1, p1, dim1, maxnorm1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen__convert_indices_from_coo_to_csr) { const std::string script = R"IR( graph(%self: Tensor, %size: int, %out_int32: bool): %bias: None = prim::Constant() %ret = aten::_convert_indices_from_coo_to_csr(%self, %size, %out_int32) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::randint(0, 3, {2}, at::kInt); auto size0 = 10; auto out_int320 = false; std::vector args{self0, size0, out_int320}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::randint(0, 3, {12}, at::kInt); auto size1 = 24; auto out_int321 = false; std::vector args2{self1, size1, out_int321}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen__convert_indices_from_csr_to_coo) { const std::string script = R"IR( graph(%crow_indices: Tensor, %col_indices: Tensor, %out_int32: bool, %transpose: bool): %bias: None = prim::Constant() %ret = aten::_convert_indices_from_csr_to_coo(%crow_indices, %col_indices, %out_int32, %transpose) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto crow_indices0 = torch::tensor({1}, torch::kInt32); auto col_indices0 = torch::tensor({0, 1, 0}, torch::kInt32); auto out_int320 = false; auto transpose0 = false; std::vector args{crow_indices0, col_indices0, out_int320, transpose0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto crow_indices1 = torch::tensor({0}, torch::kInt32); auto col_indices1 = torch::tensor({0, 1, 0, 2, 1, 2, 0, 1, 0, 2, 1, 2}, torch::kInt32); auto out_int321 = false; auto transpose1 = false; std::vector args2{ crow_indices1, col_indices1, out_int321, transpose1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_mse_loss) { const std::string script = R"IR( graph(%self: Tensor, %target: Tensor, %reduction: int): %bias: None = prim::Constant() %ret = aten::mse_loss(%self, %target, %reduction) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto target0 = at::rand({6, 6, 6}); auto reduction0 = 1; std::vector args{self0, target0, reduction0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto target1 = at::rand({22, 22, 22}); auto reduction1 = 1; std::vector args2{self1, target1, reduction1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_nll_loss_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %target: Tensor, %weight: Tensor?, %reduction: int, %ignore_index: int, %total_weight: Tensor): %bias: None = prim::Constant() %ret = aten::nll_loss_backward(%grad_output, %self, %target, %weight, %reduction, %ignore_index, %total_weight) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({}); auto self0 = at::rand({6}); auto target0 = at::randint(0, 5, {6}, torch::kInt64); auto weight0 = at::rand({6}); auto reduction0 = 1; auto ignore_index0 = 1; auto total_weight0 = at::rand({}); std::vector args{ grad_output0, self0, target0, weight0, reduction0, ignore_index0, total_weight0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({}); auto self1 = at::rand({36}); auto target1 = at::randint(0, 11, {36}, torch::kInt64); auto weight1 = at::rand({36}); auto reduction1 = 1; auto ignore_index1 = 1; auto total_weight1 = at::rand({}); std::vector args2{ grad_output1, self1, target1, weight1, reduction1, ignore_index1, total_weight1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_elu) { const std::string script = R"IR( graph(%self: Tensor, %alpha: int, %scale: int, %input_scale: int): %bias: None = prim::Constant() %ret = aten::elu(%self, %alpha, %scale, %input_scale) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto alpha0 = 2; auto scale0 = 2; auto input_scale0 = 2; std::vector args{self0, alpha0, scale0, input_scale0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto alpha1 = 2; auto scale1 = 2; auto input_scale1 = 2; std::vector args2{self1, alpha1, scale1, input_scale1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_elu_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %alpha: int, %scale: int, %input_scale: int, %is_result: bool, %self_or_result: Tensor): %bias: None = prim::Constant() %ret = aten::elu_backward(%grad_output, %alpha, %scale, %input_scale, %is_result, %self_or_result) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto alpha0 = 2; auto scale0 = 2; auto input_scale0 = 2; auto is_result0 = false; auto self_or_result0 = at::rand({6, 6, 6}); std::vector args{ grad_output0, alpha0, scale0, input_scale0, is_result0, self_or_result0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto alpha1 = 2; auto scale1 = 2; auto input_scale1 = 2; auto is_result1 = false; auto self_or_result1 = at::rand({22, 22, 22}); std::vector args2{ grad_output1, alpha1, scale1, input_scale1, is_result1, self_or_result1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_glu) { const std::string script = R"IR( graph(%self: Tensor, %dim: int): %bias: None = prim::Constant() %ret = aten::glu(%self, %dim) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto dim0 = 1; std::vector args{self0, dim0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto dim1 = 1; std::vector args2{self1, dim1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_hardsigmoid) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::hardsigmoid(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_hardsigmoid_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor): %bias: None = prim::Constant() %ret = aten::hardsigmoid_backward(%grad_output, %self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); std::vector args{grad_output0, self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); std::vector args2{grad_output1, self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_leaky_relu_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %negative_slope: int, %self_is_result: bool): %bias: None = prim::Constant() %ret = aten::leaky_relu_backward(%grad_output, %self, %negative_slope, %self_is_result) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); auto negative_slope0 = 2; auto self_is_result0 = false; std::vector args{ grad_output0, self0, negative_slope0, self_is_result0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); auto negative_slope1 = 2; auto self_is_result1 = false; std::vector args2{ grad_output1, self1, negative_slope1, self_is_result1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_softplus) { const std::string script = R"IR( graph(%self: Tensor, %beta: int, %threshold: int): %bias: None = prim::Constant() %ret = aten::softplus(%self, %beta, %threshold) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto beta0 = 2; auto threshold0 = 2; std::vector args{self0, beta0, threshold0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto beta1 = 2; auto threshold1 = 2; std::vector args2{self1, beta1, threshold1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_softplus_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %beta: int, %threshold: int): %bias: None = prim::Constant() %ret = aten::softplus_backward(%grad_output, %self, %beta, %threshold) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); auto beta0 = 2; auto threshold0 = 2; std::vector args{grad_output0, self0, beta0, threshold0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); auto beta1 = 2; auto threshold1 = 2; std::vector args2{grad_output1, self1, beta1, threshold1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_softshrink) { const std::string script = R"IR( graph(%self: Tensor, %lambd: int): %bias: None = prim::Constant() %ret = aten::softshrink(%self, %lambd) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto lambd0 = 2; std::vector args{self0, lambd0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto lambd1 = 2; std::vector args2{self1, lambd1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_softshrink_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %lambd: int): %bias: None = prim::Constant() %ret = aten::softshrink_backward(%grad_output, %self, %lambd) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto self0 = at::rand({6, 6, 6}); auto lambd0 = 2; std::vector args{grad_output0, self0, lambd0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto self1 = at::rand({22, 22, 22}); auto lambd1 = 2; std::vector args2{grad_output1, self1, lambd1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_adaptive_max_pool2d_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %indices: Tensor): %bias: None = prim::Constant() %ret = aten::adaptive_max_pool2d_backward(%grad_output, %self, %indices) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::randint(-3, 2, {2, 2, 2}); auto self0 = at::randint(-3, 2, {2, 2, 2}); auto indices0 = at::randint(0, 1, {2, 2, 2}, at::kLong); std::vector args{grad_output0, self0, indices0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::randint(-3, 3, {3, 3, 3}); auto self1 = at::randint(-3, 2, {3, 3, 3}); auto indices1 = at::randint(0, 1, {3, 3, 3}, at::kLong); std::vector args2{grad_output1, self1, indices1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_adaptive_max_pool3d_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %self: Tensor, %indices: Tensor): %bias: None = prim::Constant() %ret = aten::adaptive_max_pool3d_backward(%grad_output, %self, %indices) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::randint(-3, 2, {2, 2, 2, 2}); auto self0 = at::randint(-3, 2, {2, 2, 2, 2}); auto indices0 = at::randint(0, 1, {2, 2, 2, 2}, at::kLong); std::vector args{grad_output0, self0, indices0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::randint(-3, 3, {3, 3, 3, 3}); auto self1 = at::randint(-3, 2, {3, 3, 3, 3}); auto indices1 = at::randint(0, 1, {3, 3, 3, 3}, at::kLong); std::vector args2{grad_output1, self1, indices1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_sigmoid_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %output: Tensor): %bias: None = prim::Constant() %ret = aten::sigmoid_backward(%grad_output, %output) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto output0 = at::rand({6, 6, 6}); std::vector args{grad_output0, output0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto output1 = at::rand({22, 22, 22}); std::vector args2{grad_output1, output1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_tanh_backward) { const std::string script = R"IR( graph(%grad_output: Tensor, %output: Tensor): %bias: None = prim::Constant() %ret = aten::tanh_backward(%grad_output, %output) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto grad_output0 = at::rand({6, 6, 6}); auto output0 = at::rand({6, 6, 6}); std::vector args{grad_output0, output0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto grad_output1 = at::rand({22, 22, 22}); auto output1 = at::rand({22, 22, 22}); std::vector args2{grad_output1, output1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_isposinf) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::isposinf(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_isneginf) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::isneginf(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_entr) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::special_entr(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_ndtri) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::special_ndtri(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_erfcx) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::special_erfcx(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_xlog1py) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::special_xlog1py(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); auto other0 = at::rand({6, 6, 6}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); auto other1 = at::rand({22, 22, 22}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_zeta) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor): %bias: None = prim::Constant() %ret = aten::special_zeta(%self, %other) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({2, 2, 2}, at::kDouble) + at::ones({2, 2, 2}); auto other0 = at::rand({2, 2, 2}, at::kDouble) + at::ones({2, 2, 2}); std::vector args{self0, other0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({5, 5, 5}, at::kDouble) + at::ones({5, 5, 5}); auto other1 = at::rand({5, 5, 5}, at::kDouble) + at::ones({5, 5, 5}); std::vector args2{self1, other1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_i0e) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::special_i0e(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_i1) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::special_i1(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_special_i1e) { const std::string script = R"IR( graph(%self: Tensor): %bias: None = prim::Constant() %ret = aten::special_i1e(%self) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 6, 6}); std::vector args{self0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 22, 22}); std::vector args2{self1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); } TEST(StaticRuntime, autogen_linalg_cross) { const std::string script = R"IR( graph(%self: Tensor, %other: Tensor, %dim: int): %bias: None = prim::Constant() %ret = aten::linalg_cross(%self, %other, %dim) %cloned = aten::clone(%ret, %bias) return (%cloned) )IR"; auto self0 = at::rand({6, 3, 6}); auto other0 = at::rand({6, 3, 6}); auto dim0 = 1; std::vector args{self0, other0, dim0}; testStaticRuntime( script, args, {}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); auto self1 = at::rand({22, 3, 22}); auto other1 = at::rand({22, 3, 22}); auto dim1 = 1; std::vector args2{self1, other1, dim1}; testStaticRuntime( script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/true); }