from collections import namedtuple import benchmark_utils from benchmark_test_generator import _register_test from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace from .benchmark_core import TestConfig """Caffe2 performance microbenchmarks. This module contains Caffe2-specific functionalities for performance microbenchmarks. """ class Caffe2BenchmarkBase: """This is a base class used to create Caffe2 operator benchmark""" tensor_index = 0 test_index = 0 def __init__(self): self.args = {} self.user_provided_name = None self._num_inputs_require_grads = 0 self._pass_count = 0 def _set_backward_test(self, is_backward): pass def _device_option(self, device): """This method is used to set device option.""" if device not in ["cuda", "cpu"]: raise ValueError("Missing attrs in configs") if "cuda" in device: self.dev = core.DeviceOption(caffe2_pb2.CUDA, 0) else: self.dev = core.DeviceOption(caffe2_pb2.CPU) return self.dev def tensor(self, shapes, dtype="float32", device="cpu"): """A wapper function to create C2 tensor filled with random data. The name/label of the tensor is returned and it is available throughout the benchmark execution phase. Args: shapes: int or a sequence of ints to defining the shapes of the tensor dtype: use the dtypes from numpy (https://docs.scipy.org/doc/numpy/user/basics.types.html) Return: C2 tensor of dtype """ return self.feed_tensor(benchmark_utils.numpy_random(dtype, *shapes), device) def feed_tensor(self, tensor, device="cpu"): """Similar to tensor, but can supply any data compatible with FeedBlob""" blob_name = "blob_" + str(Caffe2BenchmarkBase.tensor_index) dev = self._device_option(device) with core.DeviceScope(dev): workspace.FeedBlob(blob_name, tensor) Caffe2BenchmarkBase.tensor_index += 1 return blob_name def module_name(self): """this is used to label the operator being benchmarked""" if self.user_provided_name: return self.user_provided_name return self.__class__.__name__ def set_module_name(self, name): self.user_provided_name = name def _value_to_str(self, value): """if value is bool, we will convert it to 0 and 1""" ret = value if type(value) == bool: ret = int(value) return str(ret) def test_name(self, name_type="long", **kargs): """this is a globally unique name which can be used to label a specific test """ if name_type == "long": test_name_str = [] for key in kargs: value = kargs[key] test_name_str.append(key + self._value_to_str(value)) name = (self.module_name() + "_" + "_".join(test_name_str)).replace(" ", "") elif name_type == "short": # this is used to generate test name based on unique index name = "_".join( [self.module_name(), "test", str(Caffe2BenchmarkBase.test_index)] ) Caffe2BenchmarkBase.test_index += 1 return name def extract_inputs_tuple(self): # add a dummy function here to match the interface of TorchBenchmarkBase pass class Caffe2OperatorTestCase: """This class includes all the information needed to benchmark an operator. op_bench: it's a user-defined class (child of Caffe2BenchmarkBase) which includes input and operator, .etc test_config: a namedtuple includes test_name, input_shape, tag, run_backward. When run_backward is false, the run_forward method will be executed, otherwise run_backward method will be executed. """ def __init__(self, op_bench, test_config): self.op_bench = op_bench self.test_config = test_config self.framework = "Caffe2" def run_forward(self, num_runs, print_per_iter=False, cuda_sync=False): """Run the forward path of an operator in a loop""" with core.DeviceScope(self.op_bench.dev): op = self.op_bench.forward() if not workspace.RunOperatorMultiple(op, num_runs): raise ValueError(f"Unable to run operator test case: {self.test_name}") def run_backward(self, num_runs, print_per_iter=False): """Run the backward path of an operator in a loop""" with core.DeviceScope(self.op_bench.dev): op = self.op_bench.backward() if not workspace.RunOperatorMultiple(op, num_runs): raise ValueError( f"Unable to run operator gradient test case: {self.test_name}" ) def _print_per_iter(self): pass def create_caffe2_op_test_case(op_bench, test_config): test_case = Caffe2OperatorTestCase(op_bench, test_config) test_config = test_case.test_config op = test_case.op_bench func_name = f"{op.module_name()}{test_case.framework}{str(test_config)}" return (func_name, test_case) OpMeta = namedtuple( "OpMeta", "op_type num_inputs input_dims input_types \ output_dims num_outputs args device", ) def generate_c2_test_from_ops(ops_metadata, bench_op, tags): """ This function is used to generate Caffe2 tests based on the metadata of operators. The metadata includes seven fields which are 1) op_type: the name of the operator. 2) num_inputs: the number of input blobs. 3) input_dims: a dictionary which includes the shapes of the input blobs. 4) input_types: a list which includes the types of input blobs. 5) output_dims: a dictionary which includes the shapes of output blobs. 6) num_oupts: the number of output blobs. 7) args: a dictionary which includes the args for th operator. Here is an example to show the metadata for the WeighedSum operator op_type : WeightedSum num_inputs: 4 input_dims: {'0': [256], '1': [1], '2': [256], '3': [1]} input_types: ['float', 'float', 'float', 'float'] output_dims: {'0': [256]} num_outputs: 4 args: {} TODO(mingzhe0908): introduce device and add it to the benchmark name """ for op_metadata in ops_metadata: tmp_attrs = OpMeta( op_metadata.op_type, op_metadata.num_inputs, op_metadata.input_dims, op_metadata.input_types, op_metadata.output_dims, op_metadata.num_outputs, op_metadata.args, op_metadata.device, ) test_attrs = tmp_attrs._asdict() op = bench_op() op.init(**test_attrs) test_name = op.test_name("short") input_config = f"Shapes: {op_metadata.input_dims}, Type: {op_metadata.input_types}, Args: {str(op_metadata.args)}" test_config = TestConfig(test_name, input_config, tags, run_backward=False) if op is not None: create_caffe2_op_test_case(op, test_config) def generate_c2_test(configs, c2_bench_op): """This function creates Caffe2 op test based on the given operator""" return _register_test(configs, c2_bench_op, create_caffe2_op_test_case, False) def generate_c2_gradient_test(configs, c2_bench_op): """This function creates Caffe2 op test based on the given operator""" return _register_test(configs, c2_bench_op, create_caffe2_op_test_case, True)