#ifndef TH_GENERIC_FILE #define TH_GENERIC_FILE "generic/serialization.cpp" #else #define SYSCHECK(call) { ssize_t __result = call; if (__result < 0) throw std::system_error(__result, std::system_category()); } void THPTensor_(writeMetadataRaw)(THTensor *self, int fd) { SYSCHECK(write(fd, &self->nDimension, sizeof(long))); SYSCHECK(write(fd, self->size, sizeof(long) * self->nDimension)); SYSCHECK(write(fd, self->stride, sizeof(long) * self->nDimension)); SYSCHECK(write(fd, &self->storageOffset, sizeof(long))); } THTensor * THPTensor_(newWithMetadataFileRaw)(int fd, THStorage *storage) { THTensorPtr tensor = THTensor_(new)(LIBRARY_STATE_NOARGS); SYSCHECK(read(fd, &tensor->nDimension, sizeof(long))); tensor->size = (long*)THAlloc(tensor->nDimension * sizeof(long)); tensor->stride = (long*)THAlloc(tensor->nDimension * sizeof(long)); SYSCHECK(read(fd, tensor->size, sizeof(long) * tensor->nDimension)); SYSCHECK(read(fd, tensor->stride, sizeof(long) * tensor->nDimension)); SYSCHECK(read(fd, &tensor->storageOffset, sizeof(long))); if (storage) THStorage_(retain)(LIBRARY_STATE storage); tensor->storage = storage; return tensor.release(); } void THPStorage_(writeFileRaw)(THStorage *self, int fd) { real *data; #ifndef THC_GENERIC_FILE data = self->data; #else std::unique_ptr cpu_data(new char[self->size * sizeof(real)]); data = (real*)cpu_data.get(); THCudaCheck(cudaMemcpy(data, self->data, self->size * sizeof(real), cudaMemcpyDeviceToHost)); #endif SYSCHECK(write(fd, &self->size, sizeof(long))); // fast track for bytes and little endian if (sizeof(real) == 1 || THP_nativeByteOrder() == THPByteOrder::THP_LITTLE_ENDIAN) { SYSCHECK(write(fd, data, sizeof(real) * self->size)); } else { long buffer_size = std::min(self->size, (long)5000); std::unique_ptr le_buffer(new uint8_t[buffer_size * sizeof(real)]); for (long i = 0; i < self->size; i += buffer_size) { size_t to_convert = std::min(self->size - i, buffer_size); if (sizeof(real) == 2) { THP_encodeInt16Buffer((uint8_t*)le_buffer.get(), (const int16_t*)data + i, THPByteOrder::THP_LITTLE_ENDIAN, to_convert); } else if (sizeof(real) == 4) { THP_encodeInt32Buffer((uint8_t*)le_buffer.get(), (const int32_t*)data + i, THPByteOrder::THP_LITTLE_ENDIAN, to_convert); } else if (sizeof(real) == 8) { THP_encodeInt64Buffer((uint8_t*)le_buffer.get(), (const int64_t*)data + i, THPByteOrder::THP_LITTLE_ENDIAN, to_convert); } SYSCHECK(write(fd, data, to_convert * sizeof(real))); } } } THStorage * THPStorage_(readFileRaw)(int fd) { real *data; long size; SYSCHECK(read(fd, &size, sizeof(long))); THStoragePtr storage = THStorage_(newWithSize)(LIBRARY_STATE size); #ifndef THC_GENERIC_FILE data = storage->data; #else std::unique_ptr cpu_data(new char[size * sizeof(real)]); data = (real*)cpu_data.get(); #endif // fast track for bytes and little endian if (sizeof(real) == 1 || THP_nativeByteOrder() == THPByteOrder::THP_LITTLE_ENDIAN) { SYSCHECK(read(fd, data, sizeof(real) * storage->size)); } else { long buffer_size = std::min(size, (long)5000); std::unique_ptr le_buffer(new uint8_t[buffer_size * sizeof(real)]); for (long i = 0; i < size; i += buffer_size) { size_t to_convert = std::min(size - i, buffer_size); SYSCHECK(read(fd, le_buffer.get(), sizeof(real) * to_convert)); if (sizeof(real) == 2) { THP_decodeInt16Buffer((int16_t*)data + i, le_buffer.get(), THPByteOrder::THP_LITTLE_ENDIAN, to_convert); } else if (sizeof(real) == 4) { THP_decodeInt32Buffer((int32_t*)data + i, le_buffer.get(), THPByteOrder::THP_LITTLE_ENDIAN, to_convert); } else if (sizeof(real) == 8) { THP_decodeInt64Buffer((int64_t*)data + i, le_buffer.get(), THPByteOrder::THP_LITTLE_ENDIAN, to_convert); } } } #ifdef THC_GENERIC_FILE THCudaCheck(cudaMemcpy(storage->data, data, size * sizeof(real), cudaMemcpyHostToDevice)); #endif return storage.release(); } #undef SYSCHECK #endif