import torch import functools from torch import Tensor from typing import Any, Callable, Optional, Tuple, Union import warnings in_dims_t = Union[int, Tuple[Optional[int], ...]] out_dims_t = Union[int, Tuple[int, ...]] # Checks that all args-to-be-batched have the same batch dim size def _validate_and_get_batch_size( in_dims_as_tuple: Tuple[Optional[int], ...], args: Tuple) -> int: batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(in_dims_as_tuple, args) if in_dim is not None] if batch_sizes and any([size != batch_sizes[0] for size in batch_sizes]): raise ValueError( f'vmap: Expected all tensors to have the same size in the mapped ' f'dimension, got sizes {batch_sizes} for the mapped dimension') return batch_sizes[0] # Check compatibility of `in_dims` and `args`. More specifically, checks the following: # Wherever an in_dim is not None, then the corresponding index in args must be # a Tensor. Furthermore, tensor must have the `in_dim` (0 <= in_dim < tensor.dim()) def _check_args_can_be_mapped_with_in_dims( in_dims_as_tuple: Tuple[Optional[int], ...], args: Tuple, fn_name: str, in_dims: in_dims_t) -> None: for idx, (in_dim, arg) in enumerate(zip(in_dims_as_tuple, args)): if in_dim is None: continue if not isinstance(in_dim, int): raise ValueError( f'vmap({fn_name}, in_dims={in_dims}, ...)(): in_dims ' f'must be a flat tuple containing ints and/or Nones. If you were ' f'trying to vmap over a Tensor inside a Python collection in ' f'`inputs`, we do not yet support that.') if not isinstance(arg, Tensor): raise ValueError( f'vmap({fn_name}, in_dims={in_dims}, ...)(): Got ' f'in_dim={in_dim} for input {idx}, but input {idx} is not a ' f'Tensor (got {type(arg)}) so it cannot be vmap\'ed over. ' f'If you were trying to vmap over a Tensor inside a Python ' f'collection in `inputs`, we do not yet support that; otherwise, ' f'use None as the respective in_dim for input {idx}.') # NB: We don't do dimension wrapping here. Consider allowing it in the # future if there is demand. if in_dim >= 0 and in_dim < arg.dim(): continue raise ValueError( f'vmap({fn_name}, in_dims={in_dims}, ...)(): Got in_dim={in_dim} ' f'for input {idx}, but input {idx} is a Tensor of dimensionality ' f'{arg.dim()} so expected in_dim to satisfy 0 <= in_dim < {arg.dim()}.') def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int: if isinstance(batched_outputs, tuple): return len(batched_outputs) return 1 # If value is a tuple, check it has length `num_elements`. # If value is not a tuple, make a tuple with `value` repeated `num_elements` times def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple: if not isinstance(value, tuple): return (value,) * num_elements if len(value) != num_elements: raise ValueError(error_message_lambda()) return value # Creates BatchedTensors for every Tensor in arg that should be batched. # Returns the (potentially) batched arguments and the batch_size. def _create_batched_inputs( in_dims: in_dims_t, args: Tuple, vmap_level: int, fn_name: str) -> Tuple[Tuple, int]: if not isinstance(in_dims, int) and not isinstance(in_dims, tuple): raise ValueError( f'vmap({fn_name}, in_dims={in_dims}, ...): expected `in_dims` to ' f'be int or tuple, got: {type(in_dims)}.') # NB: Checks that len(in_dims) == len(args) (if in_dims is a tuple). in_dims_as_tuple = _as_tuple( in_dims, len(args), lambda: f'vmap({fn_name}, in_dims={in_dims}, ...)(): expected ' f'one `in_dim` per input (got {len(args)} inputs) of {fn_name}') if len(args) == 0: raise ValueError( f'vmap({fn_name})(): got no inputs. Maybe you forgot to add ' f'inputs, or you are trying to vmap over a function with no inputs. ' f'The latter is unsupported.') _check_args_can_be_mapped_with_in_dims(in_dims_as_tuple, args, fn_name, in_dims) batch_size = _validate_and_get_batch_size(in_dims_as_tuple, args) # See NOTE [Ignored _remove_batch_dim, _add_batch_dim] batched_inputs = tuple(arg if in_dim is None else torch._add_batch_dim(arg, in_dim, vmap_level) # type: ignore for in_dim, arg in zip(in_dims_as_tuple, args)) return batched_inputs, batch_size # Undos the batching (and any batch dimensions) associated with the `vmap_level`. def _unwrap_batched( batched_outputs: Union[Tensor, Tuple[Tensor, ...]], out_dims: out_dims_t, vmap_level: int, batch_size: int, fn_name: str) -> Tuple: num_outputs = _num_outputs(batched_outputs) out_dims_as_tuple = _as_tuple( out_dims, num_outputs, lambda: f'vmap({fn_name}, ..., out_dims={out_dims}): `out_dims` must ' f'have one dim per output (got {num_outputs} outputs) of {fn_name}.') # NOTE [Ignored _remove_batch_dim, _add_batch_dim] # There is something wrong with our type bindings for functions that begin # with '_', see #40397. if isinstance(batched_outputs, Tensor): out_dim = out_dims_as_tuple[0] return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore return tuple(torch._remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore for out, out_dim in zip(batched_outputs, out_dims_as_tuple)) # Checks that `fn` returned one or more Tensors and nothing else. # NB: A python function that return multiple arguments returns a single tuple, # so we are effectively checking that `outputs` is a single Tensor or a tuple of # Tensors. def _validate_outputs(outputs: Any, fn_name: str) -> None: if isinstance(outputs, Tensor): return if not isinstance(outputs, tuple): raise ValueError(f'vmap({fn_name}, ...): `{fn_name}` must only return ' f'Tensors, got type {type(outputs)} as the return.') for idx, output in enumerate(outputs): if isinstance(output, Tensor): continue raise ValueError(f'vmap({fn_name}, ...): `{fn_name}` must only return ' f'Tensors, got type {type(output)} for return {idx}.') def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, fn_name: str) -> None: if isinstance(out_dims, int): return if not isinstance(out_dims, tuple) or \ not all([isinstance(out_dim, int) for out_dim in out_dims]): raise ValueError( f'vmap({fn_name}, ..., out_dims={out_dims}): `out_dims` must be ' f'an int or a tuple of int representing where in the outputs the ' f'vmapped dimension should appear.') # This is the global tracker for how many nested vmaps we are currently inside. VMAP_LEVEL: int = 0 # vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors, # sends those into func, and then unwraps the output BatchedTensors. Operations # on BatchedTensors perform the batched operations that the user is asking for. def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable: """ vmap is the vectorizing map. Returns a new function that maps `func` over some dimension of the inputs. Semantically, vmap pushes the map into PyTorch operations called by `func`, effectively vectorizing those operations. vmap is useful for handling batch dimensions: one can write a function `func` that runs on examples and the lift it to a function that can take batches of examples with `vmap(func)`. Furthermore, it is possible to use vmap to obtain batched gradients when composed with autograd. Args: func (function): A Python function that takes one or more arguments. Must return one or more Tensors. in_dims (int or Tuple[Optional[int]]): Specifies which dimension of the inputs should be mapped over. If `in_dims` is a Tuple, then it should have one element per input. If the `in_dim` for a particular input is None, then that indicates there is no map dimension. Default: 0. out_dims (int or Tuple[int]): Specifies where the mapped dimension should appear in the outputs. If `out_dims` is a Tuple, then it should have one element per output. Default: 0. Returns: Returns a new "batched" function. It takes the same inputs as `func`, except each input has an extra dimension at the index specified by `in_dims`. It takes returns the same outputs as `func`, except each output has an extra dimension at the index specified by `out_dims`. .. warning: vmap works best with functional-style code. Please do not perform any side-effects in `func`, with the exception of in-place PyTorch operations. Examples of side-effects include mutating Python data structures and assigning values to variables not captured in `func`. .. warning:: torch.vmap is an experimental prototype that is subject to change and/or deletion. Please use at your own risk. """ warnings.warn( 'torch.vmap is an experimental prototype that is subject to ' 'change and/or deletion. Please use at your own risk.') @functools.wraps(func) def wrapped(*args): fn_name = func.__name__ _check_out_dims_is_int_or_int_tuple(out_dims, fn_name) global VMAP_LEVEL VMAP_LEVEL += 1 try: batched_inputs, batch_size = _create_batched_inputs(in_dims, args, VMAP_LEVEL, fn_name) batched_outputs = func(*batched_inputs) _validate_outputs(batched_outputs, fn_name) return _unwrap_batched(batched_outputs, out_dims, VMAP_LEVEL, batch_size, fn_name) finally: VMAP_LEVEL -= 1 return wrapped