# Owner(s): ["module: onnx"] from test_pytorch_common import TestCase, run_tests, flatten, skipIfNoLapack, \ BATCH_SIZE, RNN_SEQUENCE_LENGTH, RNN_INPUT_SIZE, RNN_HIDDEN_SIZE import torch import torch.onnx from torch.onnx.symbolic_helper import parse_args, _get_tensor_dim_size, _get_tensor_sizes from torch.onnx import register_custom_op_symbolic, unregister_custom_op_symbolic from torch.autograd import Variable, Function from torch.nn import Module, functional import torch.nn as nn import torch.nn.functional as F import itertools import io import inspect import glob import os import shutil import tempfile import torch.testing._internal.common_utils as common '''Usage: python test/onnx/test_operators.py [--no-onnx] [--produce-onnx-test-data] --no-onnx: no onnx python dependence --produce-onnx-test-data: generate onnx test data --accept: accept onnx updates and overwrite models ''' _onnx_test = False # flag to produce onnx test cases. _onnx_dep = True # flag to import onnx package. def export_to_pbtxt(model, inputs, *args, **kwargs): return torch.onnx.export_to_pretty_string( model, inputs, google_printer=True, *args, **kwargs) def export_to_pb(model, inputs, *args, **kwargs): f = io.BytesIO() with torch.no_grad(): torch.onnx.export(model, inputs, f, *args, **kwargs) return f.getvalue() class FuncModule(Module): def __init__(self, f, params=None): if params is None: params = () super(FuncModule, self).__init__() self.f = f self.params = nn.ParameterList(list(params)) def forward(self, *args): return self.f(*itertools.chain(args, self.params)) class TestOperators(TestCase): def assertONNX(self, f, args, params=None, **kwargs): if params is None: params = () if isinstance(f, nn.Module): m = f else: m = FuncModule(f, params) m.eval() onnx_model_pbtxt = export_to_pbtxt(m, args, **kwargs) subname = kwargs.pop("subname", None) self.assertExpected(onnx_model_pbtxt, subname) if _onnx_dep: onnx_model_pb = export_to_pb(m, args, **kwargs) import onnx import onnx.checker import onnx.numpy_helper import test_onnx_common model_def = onnx.ModelProto.FromString(onnx_model_pb) onnx.checker.check_model(model_def) if _onnx_test: test_function = inspect.stack()[1][0].f_code.co_name test_name = test_function[0:4] + "_operator" + test_function[4:] output_dir = os.path.join(test_onnx_common.pytorch_operator_dir, test_name) # Assume: # 1) the old test should be delete before the test. # 2) only one assertONNX in each test, otherwise will override the data. assert not os.path.exists(output_dir), "{} should not exist!".format(output_dir) os.makedirs(output_dir) with open(os.path.join(output_dir, "model.onnx"), "wb") as file: file.write(model_def.SerializeToString()) data_dir = os.path.join(output_dir, "test_data_set_0") os.makedirs(data_dir) if isinstance(args, Variable): args = (args,) for index, var in enumerate(flatten(args)): tensor = onnx.numpy_helper.from_array(var.data.numpy()) with open(os.path.join(data_dir, "input_{}.pb".format(index)), "wb") as file: file.write(tensor.SerializeToString()) outputs = m(*args) if isinstance(outputs, Variable): outputs = (outputs,) for index, var in enumerate(flatten(outputs)): tensor = onnx.numpy_helper.from_array(var.data.numpy()) with open(os.path.join(data_dir, "output_{}.pb".format(index)), "wb") as file: file.write(tensor.SerializeToString()) def assertONNXRaises(self, err, f, args, params=None, **kwargs): if params is None: params = () if isinstance(f, nn.Module): m = f else: m = FuncModule(f, params) self.assertExpectedRaises(err, lambda: export_to_pbtxt(m, args, **kwargs)) def assertONNXRaisesRegex(self, err, reg, f, args, params=None, **kwargs): if params is None: params = () if isinstance(f, nn.Module): m = f else: m = FuncModule(f, params) with self.assertRaisesRegex(err, reg): export_to_pbtxt(m, args, **kwargs) def test_basic(self): x = torch.tensor([0.4], requires_grad=True) y = torch.tensor([0.7], requires_grad=True) self.assertONNX(lambda x, y: -torch.sigmoid(torch.tanh(x * (x + y))), (x, y)) def test_view(self): x = torch.tensor([0.0], requires_grad=True) self.assertONNX(lambda x: x.view(1, 1), x) def test_index(self): x = torch.tensor([[0.0]], requires_grad=True) self.assertONNX(lambda x: x[0], x) def test_type_as(self): x = torch.tensor([0.0], requires_grad=True) self.assertONNX(lambda x: x.type_as(x), x) def test_addconstant(self): x = torch.randn(2, 3, requires_grad=True).double() self.assertONNX(lambda x: x + 1, x) def test_add_broadcast(self): x = torch.randn(2, 3, requires_grad=True).double() y = torch.randn(3, requires_grad=True).double() self.assertONNX(lambda x, y: x + y, (x, y)) def test_add_left_broadcast(self): x = torch.randn(3, requires_grad=True).double() y = torch.randn(2, 3, requires_grad=True).double() self.assertONNX(lambda x, y: x + y, (x, y)) def test_add_size1_broadcast(self): x = torch.randn(2, 3, requires_grad=True).double() y = torch.randn(2, 1, requires_grad=True).double() self.assertONNX(lambda x, y: x + y, (x, y)) def test_add_size1_right_broadcast(self): x = torch.randn(2, 3, requires_grad=True).double() y = torch.randn(3, requires_grad=True).double() self.assertONNX(lambda x, y: x + y, (x, y)) def test_add_size1_singleton_broadcast(self): x = torch.randn(2, 3, requires_grad=True).double() y = torch.randn(1, 3, requires_grad=True).double() self.assertONNX(lambda x, y: x + y, (x, y)) def test_rsub(self): x = torch.randn(2, 3, requires_grad=True).double() self.assertONNX(lambda x: 1 - x, (x,)) def test_transpose(self): x = torch.tensor([[0.0, 1.0], [2.0, 3.0]], requires_grad=True) self.assertONNX(lambda x: x.transpose(0, 1).transpose(1, 0), x) def test_chunk(self): x = torch.tensor([0.0, 1.0, 2.0], requires_grad=True) self.assertONNX(lambda x: x.chunk(2), x) def test_split(self): x = torch.tensor([[0.0, 1.0, 1.0, 0.0, 2.0, 2.0], [2.0, 3.0, 3.0, 2.0, 1.0, 1.0]]) self.assertONNX(lambda x: torch.split(x, 2, 1), x) def test_split_with_sizes(self): x = torch.tensor([[0.0, 1.0, 1.0, 0.0, 2.0, 2.0], [2.0, 3.0, 3.0, 2.0, 1.0, 1.0]]) self.assertONNX(lambda x: torch.split(x, [2, 1, 3], 1), x) def test_concat2(self): x = torch.randn(2, 3) y = torch.randn(2, 3) self.assertONNX(lambda inputs: torch.cat(inputs, 1), ((x, y),)) def test_mm(self): m1 = torch.randn(2, 3, requires_grad=True) m2 = torch.randn(3, 4, requires_grad=True) self.assertONNX(torch.mm, (m1, m2)) def test_addmm(self): m1 = torch.randn(2, 3, requires_grad=True) m2 = torch.randn(3, 4, requires_grad=True) m3 = torch.randn(4, requires_grad=True) self.assertONNX(lambda x, y, z: torch.addmm(torch.addmm(z, x, y), x, y), (m1, m2, m3)) def test_permute2(self): x = torch.tensor([[[[[[0.0]]]]]], requires_grad=True) self.assertONNX(lambda x: x.permute(0, 1, 4, 2, 5, 3), x) def test_pad(self): x = torch.tensor([[[[0.0, 1.0, 1.0, 1.0], [2.0, 3.0, 7.0, 7.0]]]], requires_grad=True) self.assertONNX(nn.ReflectionPad2d((2, 3, 0, 1)), x) def test_params(self): x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True) y = nn.Parameter(torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)) self.assertONNX(lambda x, y: -torch.sigmoid(torch.tanh(x * (x + y))), x, params=(y, ), keep_initializers_as_inputs=True) def test_params_onnx_irv4(self): x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True) y = nn.Parameter(torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)) self.assertONNX(lambda x, y: -torch.sigmoid(torch.tanh(x * (x + y))), x, params=(y, ), keep_initializers_as_inputs=False) def test_symbolic_mismatch(self): class MyFun(Function): @staticmethod def symbolic(g, x): # The inside of this function should never be invoked, because # we will fail due to an argument mismatch first. raise AssertionError() @staticmethod def forward(ctx, x, y): return x + y x = torch.ones(2, 2) y = torch.ones(2, 2) # NB: Don't use expect test here, the type error wobbles depending # on Python version with self.assertRaisesRegex(TypeError, "occurred when translating MyFun"): export_to_pbtxt(FuncModule(MyFun().apply), (x, y)) # TODO: Do an nn style test for these def test_batchnorm(self): x = torch.ones(2, 2, 2, 2, requires_grad=True) self.assertONNX(nn.BatchNorm2d(2), x, keep_initializers_as_inputs=True) def test_batchnorm_onnx_irv4(self): x = torch.ones(2, 2, 2, 2, requires_grad=True) self.assertONNX(nn.BatchNorm2d(2), x) def test_batchnorm_1d(self): x = torch.ones(2, 2, requires_grad=True) self.assertONNX(nn.BatchNorm1d(2), x, keep_initializers_as_inputs=True) def test_batchnorm_training(self): x = torch.ones(2, 2, 2, 2, requires_grad=True) self.assertONNX(nn.BatchNorm2d(2), x, training=torch.onnx.TrainingMode.TRAINING, keep_initializers_as_inputs=True) def test_conv(self): x = torch.ones(20, 16, 50, 40, requires_grad=True) self.assertONNX(nn.Conv2d(16, 13, 3, bias=False), x, keep_initializers_as_inputs=True) def test_conv_onnx_irv4(self): x = torch.ones(20, 16, 50, 40, requires_grad=True) self.assertONNX(nn.Conv2d(16, 13, 3, bias=False), x) def test_conv_onnx_irv4_opset8(self): # This test point checks that for opset 8 (or lower), even if # keep_initializers_as_inputs is set to False, it is ignored, # and initializers are listed as ONNX graph input, in accordance # with ONNX IR v3 semantics (which apply to opset version <= 8). x = torch.ones(1, 2, 5, 7, requires_grad=True) conv_node = nn.Conv2d(2, 4, 3, bias=False) conv_node.weight.data.fill_(1.0) self.assertONNX(conv_node, x, opset_version=8, keep_initializers_as_inputs=False) def test_conv_variable_length(self): x = torch.ones(5, 3, 6, 6, requires_grad=True) model = torch.nn.Conv2d(3, 2, 3) dynamic_axes = {"input_1": [0, 2, 3], "output_1": {0: "output_1_variable_dim_0", 1: "output_1_variable_dim_1"}} model_proto_file = tempfile.NamedTemporaryFile() torch.onnx.export(model, x, model_proto_file.name, verbose=True, input_names=["input_1"], output_names=["output_1"], dynamic_axes=dynamic_axes) import onnx onnx_model = onnx.load(model_proto_file.name) onnx.checker.check_model(onnx_model) # Asserting the default dynamic axes names are generated when custom names are not provided assert(onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_param == "input_1_dynamic_axes_1") assert(onnx_model.graph.input[0].type.tensor_type.shape.dim[2].dim_param == "input_1_dynamic_axes_2") assert(onnx_model.graph.input[0].type.tensor_type.shape.dim[3].dim_param == "input_1_dynamic_axes_3") # Asserting the custom names are applied when provided assert(onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_param == "output_1_variable_dim_0") assert(onnx_model.graph.output[0].type.tensor_type.shape.dim[1].dim_param == "output_1_variable_dim_1") def test_convtranspose(self): x = torch.ones(2, 3, 4, 5, requires_grad=True) self.assertONNX(nn.ConvTranspose2d(3, 3, 3, stride=3, bias=False, padding=1, output_padding=2), x, keep_initializers_as_inputs=True) def test_maxpool(self): x = torch.randn(20, 16, 50) self.assertONNX(nn.MaxPool1d(3, stride=2), x) def test_maxpool_dilations(self): x = torch.randn(20, 16, 50) self.assertONNX(nn.MaxPool1d(2, stride=1, dilation=2), x, opset_version=10) def test_avg_pool2d(self): x = torch.randn(20, 16, 50, 32) self.assertONNX(nn.AvgPool2d(3, stride=2), x) def test_maxpool_indices(self): x = torch.randn(20, 16, 50) self.assertONNX(nn.MaxPool1d(3, stride=2, return_indices=True), x) def test_at_op(self): x = torch.randn(3, 4) class MyFun(Function): @staticmethod def symbolic(g, x): return g.at("add", x, x) @staticmethod def forward(ctx, x): return x + x class MyModule(Module): def forward(self, x): return MyFun.apply(x) self.assertONNX(MyModule(), x) def test_clip(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.clamp(x, min=-0.5, max=0.5), x) def test_clip_min(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: x.clamp(min=-0.1), x) def test_clip_max(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: x.clamp(max=0.1), x) def test_hardtanh(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.nn.Hardtanh(-0.5, 0.5)(x), x) def test_full(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.full(x.shape, 2.), x) def test_full_like(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.full_like(x, 2), x) def test_max(self): x = torch.randn(3, 4, requires_grad=True) y = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x, y: torch.max(x, y), (x, y)) def test_min(self): x = torch.randn(3, 4, requires_grad=True) y = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x, y: torch.min(x, y), (x, y)) def test_mean(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.mean(x), x) def test_reduced_mean(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.mean(x, dim=2), x) def test_reduced_mean_keepdim(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.mean(x, dim=(2, 3), keepdim=True), x) def test_mean_dtype(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.mean(x, dtype=torch.double), x) def test_reduced_mean_dtype(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.mean(x, dim=0, dtype=torch.double), x) def test_sum(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.sum(x), x) def test_sum_dtype(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.sum(x, dtype=torch.double), x) def test_reduced_sum_dtype(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.sum(x, dim=0, dtype=torch.double), x) def test_reduced_sum(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.sum(x, dim=(1, 2)), x) def test_reduced_sum_keepdim(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.sum(x, dim=2, keepdim=True), x) def test_prod(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.prod(x), x) def test_reduced_prod(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.prod(x, dim=2), x) def test_reduced_prod_keepdim(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.prod(x, dim=2, keepdim=True), x) def test_prod_dtype(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.prod(x, dtype=torch.double), x) def test_reduced_prod_dtype(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.prod(x, dim=0, dtype=torch.double), x) def test_sqrt(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.sqrt(x), x) def test_rsqrt(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.rsqrt(x), x) def test_equal(self): x = torch.randn(1, 2, 3, 1, requires_grad=False).int() y = torch.randn(1, 4, requires_grad=False).int() self.assertONNX(lambda x, y: x == y, (x, y)) def test_lt(self): x = torch.randn(1, 2, 3, 1, requires_grad=False).int() y = torch.randn(1, 4, requires_grad=False).int() self.assertONNX(lambda x, y: x < y, (x, y)) def test_gt(self): x = torch.randn(1, 2, 3, 1, requires_grad=False).int() y = torch.randn(1, 4, requires_grad=False).int() self.assertONNX(lambda x, y: x > y, (x, y)) def test_le(self): x = torch.randn(3, 4, requires_grad=False).int() y = torch.randn(3, 4, requires_grad=False).int() self.assertONNX(lambda x, y: x <= y, (x, y)) def test_ge(self): x = torch.randn(3, 4, requires_grad=False).int() y = torch.randn(3, 4, requires_grad=False).int() self.assertONNX(lambda x, y: x >= y, (x, y)) def test_exp(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x.exp(), x) def test_sin(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x.sin(), x) def test_cos(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x.cos(), x) def test_tan(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x.tan(), x) def test_asin(self): x = torch.rand(3, 4, requires_grad=True) self.assertONNX(lambda x: x.asin(), x) def test_acos(self): x = torch.rand(3, 4, requires_grad=True) self.assertONNX(lambda x: x.acos(), x) def test_slice(self): x = torch.rand(3, 4, requires_grad=True) self.assertONNX(lambda x: x[:, 1:2], x) def test_slice_dynamic(self): x = torch.rand(3, 4, requires_grad=True) self.assertONNX(lambda x: x[x.size(0):, x.size(1) - 3], x, opset_version=10) def test_sign(self): x = torch.rand(3, 4, requires_grad=True) self.assertONNX(lambda x: x.sign(), x) def test_narrow(self): x = torch.randn(3, 3, requires_grad=True) self.assertONNX(lambda x: torch.narrow(x, 0, 0, 2), x) def test_atan(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x.atan(), x) def test_view_flatten(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: x.view(x.size()[0], x.numel() // x.size()[0]), x) def test_flatten(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.flatten(x), x) def test_flatten2D(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.flatten(x, 1), x) def test_isnan(self): x = torch.tensor([1, float("nan"), 2]) self.assertONNX(lambda x: torch.isnan(x), x) def test_argmax(self): x = torch.randn(4, 4, requires_grad=True) self.assertONNX(lambda x: torch.argmax(x, dim=1), x) def test_logsoftmax(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(nn.LogSoftmax(dim=3), x) def test_pow(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) y = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x, y: x.pow(y), (x, y)) def test_elu(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(nn.ELU(), x) def test_selu(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(nn.SELU(), x) def test_repeat(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: x.repeat(1, 2, 3, 4), x) def test_repeat_dim_overflow(self): x = torch.randn(1, 2, requires_grad=True) self.assertONNX(lambda x: x.repeat(1, 2, 3, 4), x) def test_norm_p1(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: x.norm(p=1, dim=2), (x)) def test_norm_p2(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: x.norm(p=2, dim=2), (x)) def test_upsample_nearest_scale(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: nn.functional.interpolate(x, scale_factor=2., mode="nearest", recompute_scale_factor=False), x) def test_upsample_nearest_scale_default_scale_factor(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: nn.functional.interpolate(x, scale_factor=2., mode="nearest"), x) def test_upsample_nearest_size(self): x = torch.randn(1, 2, 3, 4, requires_grad=True) self.assertONNX(lambda x: nn.functional.interpolate(x, size=16, mode="nearest"), x) def test_unsqueeze(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x.unsqueeze(len(x.shape)), x) def test_batchnorm_noaffine(self): x = torch.randn(128, 128, 1, 1, requires_grad=True) self.assertONNX(nn.BatchNorm2d(128, affine=False, momentum=0.3), x, keep_initializers_as_inputs=True) def test_embedding_bags(self): emb_bag = nn.EmbeddingBag(10, 8) input = torch.tensor([1, 2, 3, 4]).long() offset = torch.tensor([0]).long() self.assertONNX(emb_bag, (input, offset), keep_initializers_as_inputs=True, operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) def test_implicit_expand(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x + 1, x) def test_reduce_sum_negative_indices(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: x.sum(-1), x) def test_randn(self): x = torch.randn(1, 2, 3, 4) self.assertONNX(lambda x: torch.randn(1, 2, 3, 4) + x, x) def test_rand(self): x = torch.rand(1, 2, 3, 4) self.assertONNX(lambda x: torch.rand(1, 2, 3, 4) + x, x) def test_rrelu(self): x = torch.randn(1, 2, 3, 4) self.assertONNX(torch.nn.RReLU(), x) def test_prelu(self): x = torch.randn(1, 2, 3, 4) self.assertONNX(torch.nn.PReLU(2), x, keep_initializers_as_inputs=True) def test_log_sigmoid(self): x = torch.randn(1, 2, 3, 4) self.assertONNX(torch.nn.LogSigmoid(), x) def test_linear(self): x = torch.randn(3, 4) self.assertONNX(torch.nn.Linear(4, 5, bias=True), x, keep_initializers_as_inputs=True) def test_empty_like(self): x = torch.randn(5, 8, requires_grad=True) self.assertONNX(lambda x: torch.empty_like(x), x) def test_empty_like_opset7(self): x = torch.randn(5, 8, requires_grad=True) self.assertONNX(lambda x: torch.empty_like(x), x, opset_version=7) def test_zeros_like(self): x = torch.randn(5, 8, requires_grad=True) self.assertONNX(lambda x: torch.zeros_like(x), x) def test_ones_like(self): x = torch.randn(6, 10, requires_grad=True) self.assertONNX(lambda x: torch.ones_like(x), x) def test_expand(self): x = torch.randn(6, 1, requires_grad=True) self.assertONNX(lambda x: x.expand(4, 6, 2), x) def test_ne(self): x = torch.randn(1, 2, 3, 1, requires_grad=False).int() y = torch.randn(1, 4, requires_grad=False).int() self.assertONNX(lambda x, y: torch.ne(x, y), (x, y)) def test_reducemax(self): x = torch.randn(1, 2, 3, 4) self.assertONNX(lambda x: torch.max(x), x) def test_reducemin(self): x = torch.randn(1, 2, 3, 4) self.assertONNX(lambda x: torch.min(x), x) def test_erf(self): x = torch.randn(1, 2, 3, 4) self.assertONNX(lambda x: x.erf(), x) def test_dropout(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.max(functional.dropout(x, training=False)), x) def test_dropout_default(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.max(functional.dropout(x,)), x) def test_dropout_training(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.max(functional.dropout(x)), x, training=torch.onnx.TrainingMode.TRAINING) def test_dropout_opset12(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.max(functional.dropout(x, training=False)), x, opset_version=12) def test_dropout_training_opset12(self): x = torch.randn(3, 4, requires_grad=True) self.assertONNX(lambda x: torch.max(functional.dropout(x)), x, opset_version=12, training=torch.onnx.TrainingMode.TRAINING) def test_nonzero(self): x = torch.tensor([[[2., 2.], [1., 0.]], [[0., 0.], [1., 1.]]], requires_grad=True) self.assertONNX(lambda x: torch.nonzero(x), x) def test_gather(self): data = torch.randn(3, 4, 3, requires_grad=True) index = torch.tensor([2, 0]).view(1, 2, 1).expand(3, 2, 3) self.assertONNX(lambda data, index: data.gather(1, index), (data, index)) def test_gather_opset11(self): data = torch.randn(3, 4, 3, requires_grad=True) index = torch.tensor([2, 0]).view(1, 2, 1).expand(3, 2, 3) self.assertONNX(lambda data, index: data.gather(1, index), (data, index), opset_version=11) def test_scatter_add(self): data = torch.tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.assertONNX(lambda data, index: data.scatter_add(1, indices, values), (data, (indices, values))) def test_scatter_add_opset11(self): data = torch.tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.assertONNX(lambda data, index: data.scatter_add(1, indices, values), (data, (indices, values)), opset_version=11) def test_master_opset(self): x = torch.randn(2, 3).float() y = torch.randn(2, 3).float() self.assertONNX(lambda x, y: x + y, (x, y), opset_version=10) def test_std(self): x = torch.randn(2, 3, 4).float() self.assertONNX(lambda x: torch.std(x, dim=(0, 1), unbiased=True, keepdim=True), x) def test_cumsum(self): x = torch.randn(2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.cumsum(x, dim=1), x, opset_version=11) def test_c2_op(self): class MyModel(torch.nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, scores, bbox_deltas, im_info, anchors): a, b = torch.ops._caffe2.GenerateProposals( (scores), (bbox_deltas), (im_info), (anchors), 2.0, 6000, 300, 0.7, 16, True, -90, 90, 1.0, True, ) return a, b model = MyModel() A = 4 H = 10 W = 8 img_count = 3 scores = torch.ones(img_count, A, H, W, dtype=torch.float32) bbox_deltas = torch.linspace(0, 10, steps=img_count * 4 * A * H * W, dtype=torch.float32) bbox_deltas = bbox_deltas.view(img_count, 4 * A, H, W) im_info = torch.ones(img_count, 3, dtype=torch.float32) anchors = torch.ones(A, 4, dtype=torch.float32) inputs = (scores, bbox_deltas, im_info, anchors) self.assertONNX(model, inputs, custom_opsets={"org.pytorch._caffe2": 0}) def test_dict(self): class MyModel(torch.nn.Module): def forward(self, x_in): x_out = {} x_out["test_key_out"] = torch.add(x_in[list(x_in.keys())[0]], list(x_in.keys())[0]) return x_out x = {torch.tensor(1.): torch.randn(1, 2, 3)} self.assertONNX(MyModel(), (x, {})) def test_dict_str(self): class MyModel(torch.nn.Module): def forward(self, x_in): x_out = {} x_out["test_key_out"] = torch.add(x_in["test_key_in"], 2.) return x_out x = {"test_key_in": torch.randn(1, 2, 3)} self.assertONNX(MyModel(), (x, {})) def test_arange_dynamic(self): class TestModel(torch.nn.Module): def forward(self, input): return torch.arange(input.shape[0], input.shape[0] + 5, 0.5) input = torch.randn(5, 3, 2) self.assertONNX(TestModel(), input, opset_version=11) def test_bitshift(self): class BitshiftModel(torch.nn.Module): def forward(self, input, input2): return input >> 1, input2 >> 2 input = torch.arange(24, dtype=torch.float32).reshape(3, 4, 2) input2 = torch.arange(24, dtype=torch.uint8).reshape(3, 4, 2) self.assertONNX(BitshiftModel(), (input, input2), opset_version=11) def test_layer_norm_aten(self): model = torch.nn.LayerNorm([10, 10]) x = torch.randn(20, 5, 10, 10) self.assertONNX(model, x, operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) def test_pixel_shuffle(self): x = torch.randn(2, 8, 3, 4).float() self.assertONNX(lambda x: torch.pixel_shuffle(x, upscale_factor=2), x, opset_version=11) def test_frobenius_norm(self): x = torch.randn(2, 3, 4).float() self.assertONNX(lambda x: torch.norm(x, p="fro", dim=(0, 1), keepdim=True), x) def test_unfold(self): x = torch.randn(2, 3, 4, requires_grad=True) self.assertONNX(lambda x: x.unfold(dimension=2, size=2, step=2), x) def test_remainder(self): x = torch.randn(2, 3, 4) y = torch.randn(2, 1, 4) self.assertONNX(lambda x, y: torch.remainder(x, y), (x, y)) def test_fmod(self): x = torch.randn(2, 3, 4) y = torch.randn(2, 1, 4) self.assertONNX(lambda x, y: torch.fmod(x, y), (x, y), opset_version=10) def test_gelu(self): x = torch.randn(2, 3, 4, 5, requires_grad=True) self.assertONNX(lambda x: torch.nn.functional.gelu(x), x) def test_unique(self): x = torch.randint(3, (2, 3, 4, 5)).float() self.assertONNX(lambda x: torch.unique(x, dim=0, sorted=True, return_inverse=False, return_counts=True), x, opset_version=11) def test_meshgrid(self): x = torch.ones(3, requires_grad=True) y = torch.zeros(4, requires_grad=True) z = torch.ones(5, requires_grad=True) self.assertONNX(lambda x, y, z: torch.meshgrid(x, y, z), (x, y, z)) def test_topk(self): x = torch.arange(1., 6., requires_grad=True) k = torch.tensor(3) self.assertONNX(lambda x, k: torch.topk(x, k), (x, k), opset_version=10) def test_topk_smallest_unsorted(self): x = torch.arange(1., 6., requires_grad=True) k = torch.tensor(3) self.assertONNX(lambda x, k: torch.topk(x, k, largest=False, sorted=False), (x, k), opset_version=11) def test_baddbmm(self): x = torch.randn(10, 3, 5) b1 = torch.randn(10, 3, 4) b2 = torch.randn(10, 4, 5) self.assertONNX(lambda x, b1, b2: torch.baddbmm(x, b1, b2), (x, b1, b2)) def test_round(self): x = torch.tensor([0.9920, -1.0362, -1.5000, 2.5000], requires_grad=True) self.assertONNX(lambda x: torch.round(x), x, opset_version=11) def test_dim(self): x = torch.ones((2, 2), requires_grad=True) self.assertONNX(lambda x: torch.scalar_tensor(x.dim()), x) @skipIfNoLapack def test_det(self): x = torch.randn(2, 3, 5, 5, device=torch.device("cpu")) self.assertONNX(lambda x: torch.det(x), x, opset_version=11) self.assertONNX(lambda x: torch.linalg.det(x), x, opset_version=11) def test_softmaxcrossentropy(self): x = torch.randn(3, 5) y = torch.empty(3, dtype=torch.long).random_(5) self.assertONNX(torch.nn.CrossEntropyLoss(), (x, y), opset_version=12) def test_softmaxcrossentropy_ignore_index(self): x = torch.randn(3, 5) y = torch.empty(3, dtype=torch.long).random_(5) self.assertONNX(torch.nn.CrossEntropyLoss(ignore_index=1), (x, y), opset_version=12) def test_softmaxcrossentropy_weights(self): x = torch.randn(3, 5) y = torch.empty(3, dtype=torch.long).random_(5) self.assertONNX(torch.nn.CrossEntropyLoss(weight=torch.randn(5)), (x, y), opset_version=12) def test_softmaxcrossentropy_3d(self): x = torch.randn(3, 5, 2) y = torch.empty(3, 2, dtype=torch.long).random_(5) self.assertONNX(torch.nn.CrossEntropyLoss(), (x, y), opset_version=12) def test_softmaxcrossentropy_3d_none(self): x = torch.randn(3, 5, 2) y = torch.empty(3, 2, dtype=torch.long).random_(5) self.assertONNX(torch.nn.CrossEntropyLoss(reduction="none"), (x, y), opset_version=12) def test_softmaxcrossentropy_4d(self): x = torch.randn(3, 5, 2, 1) y = torch.empty(3, 2, 1, dtype=torch.long).random_(5) self.assertONNX(torch.nn.CrossEntropyLoss(), (x, y), opset_version=12) def test_lstm_none_sequence_lens(self): """Test symbolic shape inference for LSTM when the input sequence_lens = None.""" input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) h0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) c0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) class LSTMModel(torch.nn.Module): def __init__(self): super().__init__() self.rnn = torch.nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False) def forward(self, x, h0, c0): a, b = self.rnn(x, (h0, c0)) return torch.ones(b[0].shape) self.assertONNX(LSTMModel(), (input, h0, c0), input_names=["x", "y"], dynamic_axes={"x" : {0: 'batch'}}, opset_version=12) def test_dynamic_axes_add(self): m1 = torch.randn(2, 3, requires_grad=True) m2 = torch.randn(2, 1, requires_grad=True) self.assertONNX(lambda x, y: torch.add(x, y), (m1, m2), input_names=["input_1", "input_2"], dynamic_axes={"input_1": {1: "dim_1"}, "input_2": {1: "dim_2"}}, opset_version=12) def test_dynamic_axes_add_inputs_same_symbolic_shape(self): m1 = torch.randn(2, 3, requires_grad=True) self.assertONNX(lambda x: torch.add(x, x), (m1,), input_names=["input_1"], dynamic_axes={"input_1": {1: "dim_1"}}, opset_version=12) def test_dynamic_axes_matmul(self): m1 = torch.randn(2, 2, 4, requires_grad=True) m2 = torch.randn(2, 4, 3, requires_grad=True) self.assertONNX(lambda x, y: torch.matmul(x, y), (m1, m2), input_names=["input_1", "input_2"], dynamic_axes={"input_1": {1: "dim_0"}, "input_2": {2: "dim_1"}}, opset_version=12) def test_dynamic_axes_reduce_mean(self): m1 = torch.randn(2, 3, 4, requires_grad=True) self.assertONNX(lambda x: torch.mean(x, dim=1), (m1), input_names=["input"], dynamic_axes={"input": {1: "dim_1", 2: "dim_2"}}, opset_version=12) def test_dynamic_axes_unchange(self): """Test ProcessUnchangeNode in symbolic shape inference.""" m1 = torch.randn(2, 3, requires_grad=True) self.assertONNX(lambda x: torch.softmax(x, dim=0), (m1,), input_names=["input"], dynamic_axes={"input": {1: "dim_1"}}, opset_version=12) def test_aten_embedding_1(self): _onnx_opset_version = 12 @parse_args('v', 'v', 'i', 'b', 'b') def embedding(g, weight, indices, padding_idx, scale_grad_by_freq, sparse): custom_attributes_json = ( '{' f'"padding_idx":{str(padding_idx)},' f'"scale_grad_by_freq":{str(scale_grad_by_freq).lower()},' f'"sparse":{str(sparse).lower()}' '}' ) output = g.op("com.microsoft::ATenOp", weight, indices, name_s='aten::embedding', custom_attributes_json_s=custom_attributes_json) return output register_custom_op_symbolic('::embedding', embedding, _onnx_opset_version) class Model(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(4, 8) def forward(self, x, y): res = self.emb(x) res = res + y return torch.ones(res.shape[0]) model = Model() x = torch.ones(32, dtype=torch.long) y = torch.randn(1, 8) self.assertONNX(model, (x, y), opset_version=_onnx_opset_version) unregister_custom_op_symbolic('::embedding', _onnx_opset_version) # This is test_aten_embedding_1 with shape inference on custom symbolic aten::embedding. def test_aten_embedding_2(self): _onnx_opset_version = 12 @parse_args('v', 'v', 'i', 'b', 'b') def embedding(g, weight, indices, padding_idx, scale_grad_by_freq, sparse): custom_attributes_json = ( '{' f'"padding_idx":{str(padding_idx)},' f'"scale_grad_by_freq":{str(scale_grad_by_freq).lower()},' f'"sparse":{str(sparse).lower()}' '}' ) output = g.op("com.microsoft::ATenOp", weight, indices, name_s='aten::embedding', custom_attributes_json_s=custom_attributes_json) # do shape inference and set it via setType indices_shape = _get_tensor_sizes(indices) if indices_shape is not None and hasattr(weight.type(), 'with_sizes'): output_type = weight.type().with_sizes(indices_shape + [_get_tensor_dim_size(weight, 1)]) output.setType(output_type) return output register_custom_op_symbolic('::embedding', embedding, _onnx_opset_version) class Model(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(4, 8) def forward(self, x, y): res = self.emb(x) res = res + y return torch.ones(res.shape[0]) model = Model() x = torch.ones(32, dtype=torch.long) y = torch.randn(1, 8) self.assertONNX(model, (x, y), opset_version=_onnx_opset_version, input_names=['input_1', 'input_2'], dynamic_axes={"input_1": {0: "dim_0"}, 'input_2': {0: "dim_1", 1: "dim_2"}}) unregister_custom_op_symbolic('::embedding', _onnx_opset_version) # Without shapeValueMap, the onnx graph looks like: # graph(%0 : Float(*, 1, 128, 1, strides=[128, 128, 1, 1], requires_grad=0, device=cpu)): # %2 : Long(4, strides=[1], device=cpu) = onnx::Shape(%0) # %4 : Long(device=cpu) = onnx::Constant[value={0}]() # %5 : Long(device=cpu) = onnx::Gather[axis=0](%2, %4) # %6 : Long(device=cpu) = onnx::Constant[value={1}]() # %7 : Long(device=cpu) = onnx::Constant[value={2}]() # %8 : Long(device=cpu) = onnx::Constant[value={-1}]() # %9 : int[] = prim::ListConstruct(%5, %6, %7, %8) # %10 : Float(*, *, *, *, strides=[128, 128, 64, 1], requires_grad=0, device=cpu) = onnx::Reshape(%0, %9) # ... # With shapeValueMap, it becomes: # ... # %10 : Float(*, 1, 2, 64, strides=[128, 128, 64, 1], requires_grad=0, device=cpu) = onnx::Reshape(%0, %9) # ... def test_shape_value_map(self): class RSoftMax(torch.nn.Module): def __init__(self, radix, cardinality): super().__init__() self.radix = radix self.cardinality = cardinality def forward(self, x): batch = x.size(0) x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2) x = F.softmax(x, dim=1) x = x.reshape(batch, -1) return x radix = 2 cardinality = 1 x = torch.randn(10, 1, 128, 1) self.assertONNX(RSoftMax(radix, cardinality), (x,), input_names=["x"], dynamic_axes={"x": {0: "dim_0"}}) if __name__ == "__main__": no_onnx_dep_flag = "--no-onnx" _onnx_dep = no_onnx_dep_flag not in common.UNITTEST_ARGS if no_onnx_dep_flag in common.UNITTEST_ARGS: common.UNITTEST_ARGS.remove(no_onnx_dep_flag) onnx_test_flag = "--produce-onnx-test-data" _onnx_test = onnx_test_flag in common.UNITTEST_ARGS if onnx_test_flag in common.UNITTEST_ARGS: common.UNITTEST_ARGS.remove(onnx_test_flag) if _onnx_test: _onnx_dep = True import test_onnx_common for d in glob.glob(os.path.join(test_onnx_common.pytorch_operator_dir, "test_operator_*")): shutil.rmtree(d) run_tests()