import dataclasses from typing import Any, Dict, Iterable, List, Optional, Tuple, Type import torch from torch._export import ExportedProgram from torch.utils._pytree import ( _register_pytree_node, Context, DumpableContext, FlattenFunc, FromDumpableContextFn, ToDumpableContextFn, tree_flatten, UnflattenFunc, ) SERIALIZED_DATACLASS_TO_PYTHON_DATACLASS: Dict[str, Type[Any]] = {} @torch._dynamo.disable def _check_input_constraints_pre_hook(self, *args, **kwargs): flat_args, _ = tree_flatten(args) return _check_input_constraints_for_graph( self.graph, range_constraints=self.range_constraints, equality_constraints=self.equality_constraints, )(*flat_args) def _check_input_constraints_for_graph( graph: torch.fx.Graph, range_constraints, equality_constraints ): from torch._export.passes.add_runtime_assertions_for_constraints_pass import ( _AddRuntimeAssertionsForConstraintsPass, ) def inner(*args): # TODO(zhxchen17) Don't generate a runtime graph on the fly. _assertion_graph = torch.fx.GraphModule({}, torch.fx.Graph()) for p in graph.nodes: if p.op != "placeholder": continue new_p = _assertion_graph.graph.placeholder(p.name) new_p.meta = p.meta _assertion_graph.graph.output(()) _assertion_graph_res = _AddRuntimeAssertionsForConstraintsPass( range_constraints, equality_constraints, )(_assertion_graph) assert _assertion_graph_res is not None _assertion_graph = _assertion_graph_res.graph_module _assertion_graph(*args) return inner def register_dataclass_as_pytree_node( cls: Any, flatten_fn: Optional[FlattenFunc] = None, unflatten_fn: Optional[UnflattenFunc] = None, *, to_dumpable_context: Optional[ToDumpableContextFn] = None, from_dumpable_context: Optional[FromDumpableContextFn] = None, serialized_type_name: Optional[str] = None, return_none_fields: bool = False, ) -> None: assert dataclasses.is_dataclass( cls ), f"Only dataclasses can be registered with this function: {cls}" serialized_type = f"{cls.__module__}.{cls.__name__}" SERIALIZED_DATACLASS_TO_PYTHON_DATACLASS[serialized_type] = cls def default_flatten_fn(obj: Any) -> Tuple[List[Any], Context]: flattened = [] flat_names = [] none_names = [] for f in dataclasses.fields(obj): name, val = f.name, getattr(obj, f.name) if val is not None or return_none_fields: flattened.append(val) flat_names.append(name) else: none_names.append(name) return flattened, (cls, flat_names, none_names) def default_unflatten_fn(values: Iterable[Any], context: Context) -> Any: typ, flat_names, none_names = context return typ(**dict(zip(flat_names, values)), **{k: None for k in none_names}) def default_to_dumpable_context(context: Context) -> DumpableContext: return (serialized_type, context[1], context[2]) def default_from_dumpable_context(dumpable_context: DumpableContext) -> Context: return ( SERIALIZED_DATACLASS_TO_PYTHON_DATACLASS[dumpable_context[0]], dumpable_context[1], dumpable_context[2], ) flatten_fn = flatten_fn if flatten_fn is not None else default_flatten_fn unflatten_fn = unflatten_fn if unflatten_fn is not None else default_unflatten_fn if (to_dumpable_context is None) ^ (from_dumpable_context is None): raise ValueError( f"Both to_dumpable_context and from_dumpable_context for {cls} must " "be None or registered." ) to_dumpable_context = ( to_dumpable_context if to_dumpable_context is not None else default_to_dumpable_context ) from_dumpable_context = ( from_dumpable_context if from_dumpable_context is not None else default_from_dumpable_context ) _register_pytree_node( cls, flatten_fn, unflatten_fn, serialized_type_name=serialized_type_name, to_dumpable_context=to_dumpable_context, from_dumpable_context=from_dumpable_context, ) def is_param(program: ExportedProgram, node: torch.fx.Node) -> bool: """ Checks if the given node is a parameter within the exported program """ return node.name in program.graph_signature.inputs_to_parameters def get_param( program: ExportedProgram, node: torch.fx.Node, ) -> Optional[torch.nn.Parameter]: """ Returns the parameter associated with the given node in the exported program. Returns None if the node is not a parameter within the exported program """ if is_param(program, node): parameter_name = program.graph_signature.inputs_to_parameters[node.name] return program.state_dict[parameter_name] return None def is_buffer(program: ExportedProgram, node: torch.fx.Node) -> bool: """ Checks if the given node is a buffer within the exported program """ return node.name in program.graph_signature.inputs_to_buffers def get_buffer( program: ExportedProgram, node: torch.fx.Node, ) -> Optional[torch.Tensor]: """ Returns the buffer associated with the given node in the exported program. Returns None if the node is not a buffer within the exported program """ if is_buffer(program, node): buffer_name = program.graph_signature.inputs_to_buffers[node.name] return program.state_dict[buffer_name] return None