from torch.onnx.symbolic_helper import parse_args import torch.onnx.symbolic_helper as sym_help import torch.onnx.symbolic_registry as sym_registry import importlib from inspect import getmembers, isfunction def register_quantized_ops(domain, version): # Register all the non-quantized ops sym_registry.register_version('', version) # Register all quantized ops module = importlib.import_module('torch.onnx.symbolic_caffe2') sym_registry._symbolic_versions['caffe2'] = module quant_version_ops = getmembers(sym_registry._symbolic_versions['caffe2']) for op in quant_version_ops: if isfunction(op[1]) and not sym_registry.is_registered_op(op[0], domain, version): aten_q_ops = ['relu', '_empty_affine_quantized', 'dequantize', 'quantize_per_tensor', 'upsample_nearest2d', 'avg_pool2d', 'reshape', 'slice', 'cat', 'max_pool2d', 'sigmoid'] if op[0] in aten_q_ops: sym_registry.register_op(op[0], op[1], '', version) sym_registry.register_op(op[0], op[1], domain, version) def _permute_helper(g, input, axes): quant_args = { "axes_i": axes, "Y_scale_f": input.node()["Y_scale"], "Y_zero_point_i": input.node()["Y_zero_point"], } output = g.op("_caffe2::Int8Transpose", input, **quant_args) sym_help._quantized_ops.add(output) return output def nchw2nhwc(g, input): axes = [0, 2, 3, 1] return _permute_helper(g, input, axes) def nhwc2nchw(g, input): axes = [0, 3, 1, 2] return _permute_helper(g, input, axes) def linear_prepack(g, weight, bias): # Mapping to a dummy caffe2 prepack node. # During the onnx -> c2 conversion we can look up original weight and bias # from this node output = g.op("_caffe2::WeightPrepack", weight, bias) sym_help._quantized_ops.add(output) return output @parse_args('v', 'v', 'v', 'f', 'i') def linear(g, input, weight, bias, scale, zero_point): kwargs = { "Y_scale_f": scale, "Y_zero_point_i": zero_point, } output = g.op("_caffe2::Int8FC", input, weight, bias, **kwargs) sym_help._quantized_ops.add(output) return output def conv_prepack(g, input, weight, bias, stride, padding, dilation, groups): # Mapping to a dummy caffe2 prepack node. # During the onnx -> c2 conversion we can look up original weight and bias # from this node output = g.op("_caffe2::WeightPrepack", input, weight, bias) sym_help._quantized_ops.add(output) return output @parse_args('v', 'v', 'v', 'is', 'is', 'is', 'i', 'f', 'i') def conv2d(g, input, weight, bias, stride, padding, dilation, groups, scale, zero_point): kernel_size = weight.node()["shape"][1:3] kwargs = { "strides_i": stride, "pads_i": padding + padding, "dilations_i": dilation, "group_i": groups, "kernels_i": kernel_size, "order_s": "NHWC", "Y_scale_f": scale, "Y_zero_point_i": zero_point, } output = g.op("_caffe2::Int8Conv", input, weight, bias, **kwargs) sym_help._quantized_ops.add(output) return output @parse_args('v', 'v', 'v', 'is', 'is', 'is', 'i', 'f', 'i') def conv2d_relu(g, input, weight, bias, stride, padding, dilation, groups, scale, zero_point): kernel_size = weight.node()["shape"][1:3] kwargs = { "strides_i": stride, "pads_i": padding + padding, "dilations_i": dilation, "group_i": groups, "kernels_i": kernel_size, "order_s": "NHWC", "Y_scale_f": scale, "Y_zero_point_i": zero_point, } output = g.op("_caffe2::Int8ConvRelu", input, weight, bias, **kwargs) sym_help._quantized_ops.add(output) return output @parse_args('v', 'v', 'f', 'i') def add(g, input_a, input_b, scale, zero_point): kwargs = { "Y_scale_f": scale, "Y_zero_point_i": zero_point, } output = g.op("_caffe2::Int8Add", input_a, input_b, **kwargs) sym_help._quantized_ops.add(output) return output @parse_args('v') def relu(g, input): if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import relu return relu(g, input) kwargs = { "Y_scale_f": input.node()["Y_scale"], "Y_zero_point_i": input.node()["Y_zero_point"], } output = g.op("_caffe2::Int8Relu", input, **kwargs) sym_help._quantized_ops.add(output) return output @parse_args('v', 'f', 'i', 't') def quantize_per_tensor(g, input, scale, zero_point, dtype): kwargs = { "Y_scale_f": scale, "Y_zero_point_i": zero_point, } output = g.op("_caffe2::Int8Quantize", input, **kwargs) sym_help._quantized_ops.add(output) return output @parse_args('v') def dequantize(g, input): return g.op("_caffe2::Int8Dequantize", input) @parse_args('v', 't', 't', 't', 't', 't', 't', 't') def _empty_affine_quantized(g, input, shape, scale, zero_point, dtype, pin_memory, memory_format, layout): return input def upsample_nearest2d(g, input, output_size, align_corners=None, scales_h=None, scales_w=None): if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import upsample_nearest2d as upsample_nearest2d_impl return upsample_nearest2d_impl(g, input, output_size, align_corners) output_size = sym_help._parse_arg(output_size, 'is') kwargs = { "output_size_i": output_size, "Y_scale_f": input.node()["Y_scale"], "Y_zero_point_i": input.node()["Y_zero_point"], } input = nchw2nhwc(g, input) output = g.op("_caffe2::Int8ResizeNearest", input, **kwargs) output = nhwc2nchw(g, output) sym_help._quantized_ops.add(output) return output @parse_args('v', 'is', 'is', 'is', 'is', 'i') def max_pool2d(g, input, kernel_size, stride, padding, dilation, ceil_mode): if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import max_pool2d return max_pool2d(g, input, kernel_size, stride, padding, dilation, ceil_mode) kwargs = { "strides_i": stride, "pads_i": padding + padding, "kernel_i": kernel_size[0], "order_s": "NHWC", "Y_scale_f": input.node()["Y_scale"], "Y_zero_point_i": input.node()["Y_zero_point"], } input = nchw2nhwc(g, input) output = g.op("_caffe2::Int8MaxPool", input, **kwargs) output = nhwc2nchw(g, output) sym_help._quantized_ops.add(output) return output @parse_args('v', 'is', 'is', 'is', 'i', 'i', 'none') def avg_pool2d(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override=None): if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import avg_pool2d return avg_pool2d(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) kwargs = { "strides_i": stride, "pads_i": padding + padding, "kernel_i": kernel_size[0], "order_s": "NHWC", "Y_scale_f": input.node()["Y_scale"], "Y_zero_point_i": input.node()["Y_zero_point"], } input = nchw2nhwc(g, input) output = g.op("_caffe2::Int8AveragePool", input, **kwargs) output = nhwc2nchw(g, output) sym_help._quantized_ops.add(output) return output def reshape(g, input, shape): if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import reshape return reshape(g, input, shape) kwargs = { "Y_scale_f": input.node()["Y_scale"], "Y_zero_point_i": input.node()["Y_zero_point"], } output = g.op("_caffe2::Int8Reshape", input, shape, **kwargs) sym_help._quantized_ops.add(output) return output @parse_args('v', 'v', 'v', 'v', 'i') def slice(g, input, dim, start, end, step): if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import slice return slice(g, input, dim, start, end, step) if step != 1: raise RuntimeError("ONNX quantized slice export only works for step 1.") start = sym_help._parse_arg(start, 'i') end = sym_help._parse_arg(end, 'i') dim = sym_help._parse_arg(dim, 'i') kwargs = { "start_idx_i": start, "end_idx_i": end, "dim_i": dim, "Y_scale_f": input.node()["Y_scale"], "Y_zero_point_i": input.node()["Y_zero_point"], } output = g.op("_caffe2::Int8Slice", input, **kwargs) sym_help._quantized_ops.add(output) return output def cat(g, tensor_list, dim, scale=None, zero_point=None): tensors = sym_help._unpack_list(tensor_list) input = tensors[0] if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import cat return cat(g, tensor_list, dim) dim = sym_help._parse_arg(dim, 'i') kwargs = { "Y_scale_f": tensors[0].node()["Y_scale"], "Y_zero_point_i": tensors[0].node()["Y_zero_point"], } output = g.op("_caffe2::Int8Concat", *tensors, axis_i=dim, **kwargs) sym_help._quantized_ops.add(output) return output @parse_args('v') def sigmoid(g, input): if input not in sym_help._quantized_ops: from torch.onnx.symbolic_opset9 import sigmoid return sigmoid(g, input) # Caffe2 expects the output scale to be 1/2^8 # and output zero_point to be 0 (quint8 type) out_scale = 1.0 / 256 zero_point = 0 kwargs = { "Y_scale_f": out_scale, "Y_zero_point_i": zero_point, } output = g.op("_caffe2::Int8Sigmoid", input, **kwargs) sym_help._quantized_ops.add(output) return output