r""" The torch package contains data structures for multi-dimensional tensors and mathematical operations over these are defined. Additionally, it provides many utilities for efficient serializing of Tensors and arbitrary types, and other useful utilities. It has a CUDA counterpart, that enables you to run your tensor computations on an NVIDIA GPU with compute capability >= 3.0. """ import os import sys import platform import ctypes if sys.version_info < (3,): raise Exception("Python 2 has reached end-of-life and is no longer supported by PyTorch.") from ._utils import _import_dotted_name from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \ USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS from .version import __version__ from ._six import string_classes as _string_classes from typing import Set, Type __all__ = [ 'typename', 'is_tensor', 'is_storage', 'set_default_tensor_type', 'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed', 'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul', 'no_grad', 'enable_grad', 'rand', 'randn', 'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage', 'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage', 'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor', 'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor', 'lobpcg', '_set_deterministic', '_is_deterministic' ] ################################################################################ # Load the extension module ################################################################################ if sys.platform == 'win32': pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files') py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin') th_dll_path = os.path.join(os.path.dirname(__file__), 'lib') # When users create a virtualenv that inherits the base environment, # we will need to add the corresponding library directory into # DLL search directories. Otherwise, it will rely on `PATH` which # is dependent on user settings. if sys.exec_prefix != sys.base_exec_prefix: base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin') else: base_py_dll_path = '' dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path])) if all([not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths]): nvtoolsext_dll_path = os.path.join( os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64') else: nvtoolsext_dll_path = '' from .version import cuda as cuda_version import glob if cuda_version and all([not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths]): cuda_version_1 = cuda_version.replace('.', '_') cuda_path_var = 'CUDA_PATH_V' + cuda_version_1 default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version) cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin') else: cuda_path = '' dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path])) kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True) with_load_library_flags = hasattr(kernel32, 'AddDllDirectory') prev_error_mode = kernel32.SetErrorMode(0x0001) kernel32.LoadLibraryW.restype = ctypes.c_void_p if with_load_library_flags: kernel32.AddDllDirectory.restype = ctypes.c_void_p kernel32.LoadLibraryExW.restype = ctypes.c_void_p for dll_path in dll_paths: if sys.version_info >= (3, 8): os.add_dll_directory(dll_path) elif with_load_library_flags: res = kernel32.AddDllDirectory(dll_path) if res is None: err = ctypes.WinError(ctypes.get_last_error()) err.strerror += ' Error adding "{}" to the DLL directories.'.format(dll_path) raise err try: ctypes.CDLL('vcruntime140.dll') ctypes.CDLL('msvcp140.dll') if cuda_version not in ('9.2', '10.0'): ctypes.CDLL('vcruntime140_1.dll') except OSError: print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure. It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''') dlls = glob.glob(os.path.join(th_dll_path, '*.dll')) path_patched = False for dll in dlls: is_loaded = False if with_load_library_flags: res = kernel32.LoadLibraryExW(dll, None, 0x00001100) last_error = ctypes.get_last_error() if res is None and last_error != 126: err = ctypes.WinError(last_error) err.strerror += ' Error loading "{}" or one of its dependencies.'.format(dll) raise err elif res is not None: is_loaded = True if not is_loaded: if not path_patched: os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']]) path_patched = True res = kernel32.LoadLibraryW(dll) if res is None: err = ctypes.WinError(ctypes.get_last_error()) err.strerror += ' Error loading "{}" or one of its dependencies.'.format(dll) raise err kernel32.SetErrorMode(prev_error_mode) # See Note [Global dependencies] def _load_global_deps(): if platform.system() == 'Windows': return lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so') here = os.path.abspath(__file__) lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name) ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL) if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \ platform.system() != 'Windows': # Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a # few circumstances: # # 1. You're in a build environment (e.g., fbcode) where # libtorch_global_deps is not available, but you still need # to get mkl to link in with RTLD_GLOBAL or it will just # not work. # # 2. You're trying to run PyTorch under UBSAN and you need # to ensure that only one copy of libtorch is loaded, so # vptr checks work properly # # If you're using this setting, you must verify that all the libraries # you load consistently use the same libstdc++, or you may have # mysterious segfaults. # import os as _dl_flags if not hasattr(_dl_flags, 'RTLD_GLOBAL') or not hasattr(_dl_flags, 'RTLD_LAZY'): try: # next try if DLFCN exists import DLFCN as _dl_flags # type: ignore except ImportError: # as a last attempt, use compile-time constants import torch._dl as _dl_flags # type: ignore old_flags = sys.getdlopenflags() sys.setdlopenflags(_dl_flags.RTLD_GLOBAL | _dl_flags.RTLD_LAZY) from torch._C import * sys.setdlopenflags(old_flags) del old_flags del _dl_flags else: # Easy way. You want this most of the time, because it will prevent # C++ symbols from libtorch clobbering C++ symbols from other # libraries, leading to mysterious segfaults. # # If building in an environment where libtorch_global_deps isn't available # like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will # want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False # # See Note [Global dependencies] if USE_GLOBAL_DEPS: _load_global_deps() from torch._C import * # Appease the type checker; ordinarily this binding is inserted by the # torch._C module initialization code in C if False: import torch._C as _C __all__ += [name for name in dir(_C) if name[0] != '_' and not name.endswith('Base')] ################################################################################ # Define basic utilities ################################################################################ def typename(o): if isinstance(o, torch.Tensor): return o.type() module = '' class_name = '' if hasattr(o, '__module__') and o.__module__ != 'builtins' \ and o.__module__ != '__builtin__' and o.__module__ is not None: module = o.__module__ + '.' if hasattr(o, '__qualname__'): class_name = o.__qualname__ elif hasattr(o, '__name__'): class_name = o.__name__ else: class_name = o.__class__.__name__ return module + class_name def is_tensor(obj): r"""Returns True if `obj` is a PyTorch tensor. Note that this function is simply doing ``isinstance(obj, Tensor)``. Using that ``isinstance`` check is better for typechecking with mypy, and more explicit - so it's recommended to use that instead of ``is_tensor``. Args: obj (Object): Object to test """ return isinstance(obj, torch.Tensor) def is_storage(obj): r"""Returns True if `obj` is a PyTorch storage object. Args: obj (Object): Object to test """ return type(obj) in _storage_classes def set_default_tensor_type(t): r"""Sets the default ``torch.Tensor`` type to floating point tensor type ``t``. This type will also be used as default floating point type for type inference in :func:`torch.tensor`. The default floating point tensor type is initially ``torch.FloatTensor``. Args: t (type or string): the floating point tensor type or its name Example:: >>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_tensor_type(torch.DoubleTensor) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 """ if isinstance(t, _string_classes): t = _import_dotted_name(t) _C._set_default_tensor_type(t) def set_default_dtype(d): r"""Sets the default floating point dtype to :attr:`d`. This dtype is: 1. The inferred dtype for python floats in :func:`torch.tensor`. 2. Used to infer dtype for python complex numbers. The default complex dtype is set to ``torch.complex128`` if default floating point dtype is ``torch.float64``, otherwise it's set to ``torch.complex64`` The default floating point dtype is initially ``torch.float32``. Args: d (:class:`torch.dtype`): the floating point dtype to make the default Example:: >>> # initial default for floating point is torch.float32 >>> torch.tensor([1.2, 3]).dtype torch.float32 >>> # initial default for floating point is torch.complex64 >>> torch.tensor([1.2, 3j]).dtype torch.complex64 >>> torch.set_default_dtype(torch.float64) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 >>> torch.tensor([1.2, 3j]).dtype # a new complex tensor torch.complex128 """ _C._set_default_dtype(d) def _set_deterministic(d): r"""Sets a global flag to force all operations to use a deterministic implementation if available. If an operation that does not have a deterministic implementation is called while this setting is True, the operation will throw a RuntimeError. Note that deterministic operations tend to have worse performance than non-deterministic operations. Args: d (:class:`bool`): If True, force operations to be deterministic. If False, allow non-deterministic operations. .. warning:: This feature is experimental and not complete. The above docstring represents what the future behavior is intended to be. Right now, `_set_deterministic` will only affect `torch.bmm` and convolution operators. """ _C._set_deterministic(d) def _is_deterministic(): r"""Returns True if the global deterministic flag is turned on and operations are being forced to use a deterministic implementation. .. warning:: This feature is experimental and not complete. The above docstring represents what the future behavior is intended to be. Right now, the global deterministic flag will only affect `torch.bmm` and convolution operators. """ return _C._get_deterministic() # If you edit these imports, please update torch/__init__.py.in as well from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed from .serialization import save, load from ._tensor_str import set_printoptions ################################################################################ # Define Storage and Tensor classes ################################################################################ from .tensor import Tensor from .storage import _StorageBase class DoubleStorage(_C.DoubleStorageBase, _StorageBase): pass class FloatStorage(_C.FloatStorageBase, _StorageBase): pass class HalfStorage(_C.HalfStorageBase, _StorageBase): pass class LongStorage(_C.LongStorageBase, _StorageBase): pass class IntStorage(_C.IntStorageBase, _StorageBase): pass class ShortStorage(_C.ShortStorageBase, _StorageBase): pass class CharStorage(_C.CharStorageBase, _StorageBase): pass class ByteStorage(_C.ByteStorageBase, _StorageBase): pass class BoolStorage(_C.BoolStorageBase, _StorageBase): pass class BFloat16Storage(_C.BFloat16StorageBase, _StorageBase): pass class ComplexDoubleStorage(_C.ComplexDoubleStorageBase, _StorageBase): pass class ComplexFloatStorage(_C.ComplexFloatStorageBase, _StorageBase): pass class QUInt8Storage(_C.QUInt8StorageBase, _StorageBase): pass class QInt8Storage(_C.QInt8StorageBase, _StorageBase): pass class QInt32Storage(_C.QInt32StorageBase, _StorageBase): pass _storage_classes = { DoubleStorage, FloatStorage, LongStorage, IntStorage, ShortStorage, CharStorage, ByteStorage, HalfStorage, BoolStorage, QUInt8Storage, QInt8Storage, QInt32Storage, BFloat16Storage, ComplexFloatStorage, ComplexDoubleStorage } # The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings() _tensor_classes: Set[Type] = set() ################################################################################ # Initialize extension ################################################################################ def manager_path(): if platform.system() == 'Windows': return b"" path = get_file_path('torch', 'bin', 'torch_shm_manager') prepare_multiprocessing_environment(get_file_path('torch')) if not os.path.exists(path): raise RuntimeError("Unable to find torch_shm_manager at " + path) return path.encode('utf-8') # Shared memory manager needs to know the exact location of manager executable _C._initExtension(manager_path()) del manager_path # Appease the type checker: it can't deal with direct setting of globals(). # Note that we will see "too many" functions when reexporting this way; there # is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions # so that this import is good enough if False: from torch._C._VariableFunctions import * for name in dir(_C._VariableFunctions): if name.startswith('__'): continue globals()[name] = getattr(_C._VariableFunctions, name) __all__.append(name) ################################################################################ # Import interface functions defined in Python ################################################################################ # needs to be after the above ATen bindings so we can overwrite from Python side from .functional import * ################################################################################ # Remove unnecessary members ################################################################################ del DoubleStorageBase del FloatStorageBase del LongStorageBase del IntStorageBase del ShortStorageBase del CharStorageBase del ByteStorageBase del BoolStorageBase del QUInt8StorageBase del BFloat16StorageBase del ComplexDoubleStorageBase del ComplexFloatStorageBase ################################################################################ # Import most common subpackages ################################################################################ import torch.cuda import torch.autograd from torch.autograd import no_grad, enable_grad, set_grad_enabled import torch.futures import torch.nn import torch.nn.intrinsic import torch.nn.quantized import torch.optim import torch.multiprocessing import torch.sparse import torch.utils.backcompat import torch.onnx import torch.jit import torch.hub import torch.random import torch.distributions import torch.testing import torch.backends.cuda import torch.backends.mkl import torch.backends.mkldnn import torch.backends.openmp import torch.backends.quantized import torch.quantization import torch.utils.data import torch.__config__ import torch.__future__ _C._init_names(list(torch._storage_classes)) # attach docstrings to torch and tensor functions from . import _torch_docs, _tensor_docs, _storage_docs del _torch_docs, _tensor_docs, _storage_docs def compiled_with_cxx11_abi(): r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1""" return _C._GLIBCXX_USE_CXX11_ABI # Import the ops "namespace" from torch._ops import ops from torch._classes import classes # Import the quasi random sampler import torch.quasirandom # If you are seeing this, it means that this call site was not checked if # the memory format could be preserved, and it was switched to old default # behaviour of contiguous legacy_contiguous_format = contiguous_format # Register fork handler to initialize OpenMP in child processes (see gh-28389) from torch.multiprocessing._atfork import register_after_fork register_after_fork(torch.get_num_threads) del register_after_fork # Import tools that require fully imported torch (for applying # torch.jit.script as a decorator, for instance): from ._lobpcg import lobpcg # These were previously defined in native_functions.yaml and appeared on the # `torch` namespace, but we moved them to c10 dispatch to facilitate custom # class usage. We add these lines here to preserve backward compatbility. quantized_lstm = torch.ops.aten.quantized_lstm quantized_gru = torch.ops.aten.quantized_gru