from collections import namedtuple from torch.testing._internal.common_utils import run_tests from torch.testing._internal.jit_utils import JitTestCase from torch.testing import FileCheck from torch import jit from typing import NamedTuple, List, Optional, Dict, Tuple, Any from jit.test_module_interface import TestModuleInterface # noqa: F401 import unittest import sys import torch import torch.testing._internal.jit_utils import torch.nn as nn import types class TestScriptPy3(JitTestCase): def test_joined_str(self): def func(x): hello, test = "Hello", "test" print(f"{hello + ' ' + test}, I'm a {test}") # noqa E999 print(f"format blank") # noqa F541 hi = 'hi' print(f"stuff before {hi}") print(f"{hi} stuff after") return x + 1 x = torch.arange(4., requires_grad=True) # TODO: Add support for f-strings in string parser frontend # self.checkScript(func, [x], optimize=True, capture_output=True) with self.capture_stdout() as captured: out = func(x) scripted = torch.jit.script(func) with self.capture_stdout() as captured_script: out_script = func(x) self.assertAlmostEqual(out, out_script) self.assertEqual(captured, captured_script) @unittest.skipIf(sys.version_info[:2] < (3, 7), "`dataclasses` module not present on < 3.7") def test_dataclass_error(self): from dataclasses import dataclass @dataclass class NormalizationInfo(object): mean: float = 0.0 def compute(self, total_rows): return self.mean def fn(): return NormalizationInfo(1, 2, 3, 4, 5) with self.assertRaisesRegex(OSError, "NormalizationInfo"): torch.jit.script(fn) def test_optional_dict_construct(self): class M(torch.nn.Module): def use(self, buffer: Dict[str, Optional[torch.Tensor]]): return buffer["prev_key"] def forward(self, x): prev_key = torch.rand(2, 3) next_key = torch.rand(2, 3) saved_state: Dict[str, Optional[torch.Tensor]] = { "prev_key": prev_key, "next_key": next_key, } return self.use(saved_state) self.checkModule(M(), (torch.rand(2, 2),)) def test_kwarg_support(self): with self.assertRaisesRegex(torch.jit.frontend.NotSupportedError, "variable number of arguments"): class M(torch.nn.Module): def forward(self, *, n_tokens: int, device_name: str = 2): pass torch.jit.script(M()) class M(torch.nn.Module): def forward(self, *, n_tokens: int, device_name: str): return n_tokens, device_name sm = torch.jit.script(M()) with self.assertRaisesRegex(RuntimeError, "missing value for argument 'n_tokens'"): sm() input = (3, 'hello') self.assertEqual(sm(*input), input) def test_named_tuple(self): class FeatureVector(NamedTuple): float_features: float sequence_features: List[float] time_since_first: float @torch.jit.script def foo(x) -> float: fv = FeatureVector(3.0, [3.0], 3.0) # noqa rv = fv.float_features for val in fv.sequence_features: rv += val rv *= fv.time_since_first return rv self.assertEqual(foo(torch.rand(3, 4)), 18.0) def test_named_tuple_constant(self): class Tup(NamedTuple): a: int b: int @torch.jit.script def foo(): return Tup(1, 2) self.assertEqual(foo(), Tup(1, 2)) def test_dict_preserves_order(self): def dict_ordering(): a : Dict[int, int] = {} for i in range(1000): a[i] = i + 1 return a self.checkScript(dict_ordering, ()) di = torch.jit.script(dict_ordering)() res = list(di.items()) for i in range(1000): key, value = res[i] self.assertTrue(key == i and value == i + 1) def test_list_unification_hint(self): with self.assertRaisesRegex(RuntimeError, "Expected a List type hint"): @torch.jit.script def x(): b : int = [2, 3] return b def test_return_named_tuple(self): class FeatureVector(NamedTuple): float_features: float sequence_features: List[float] time_since_first: float @torch.jit.script def foo(x): fv = FeatureVector(3.0, [3.0], 3.0) return fv out = foo(torch.rand(3, 4)) out = foo(torch.rand(3, 4)) self.assertEqual(out.float_features, 3.0) self.assertEqual(out.sequence_features, [3.0]) self.assertEqual(out.time_since_first, 3.0) def test_named_tuple_as_attr(self): class Config(NamedTuple): size: int class MyMod(nn.Module): configs: Dict[int, Config] def __init__(self, configs): super().__init__() self.configs = configs def forward(self, x): for _id, config in self.configs.items(): x += config.size return x s = torch.jit.script(MyMod({0: Config(size=16)})) def test_types_as_values(self): def fn(m: torch.Tensor) -> torch.device: return m.device self.checkScript(fn, [torch.randn(2, 2)]) GG = namedtuple('GG', ['f', 'g']) class Foo(torch.nn.Module): def __init__(self): super().__init__() @torch.jit.ignore def foo(self, x, z): # type: (Tensor, Tensor) -> Tuple[GG, GG] return GG(x, z), GG(x, z) def forward(self, x, z): return self.foo(x, z) foo = torch.jit.script(Foo()) y = foo(torch.randn(2, 2), torch.randn(2, 2)) class Foo(torch.nn.Module): def __init__(self): super().__init__() @torch.jit.ignore def foo(self, x, z) -> Tuple[GG, GG]: return GG(x, z) def forward(self, x, z): return self.foo(x, z) foo = torch.jit.script(Foo()) y = foo(torch.randn(2, 2), torch.randn(2, 2)) def test_named_tuple_resolution(self): class TheType(NamedTuple): t: int class MyModule(types.ModuleType): def __init__(self): super(MyModule, self).__init__('MyModule') def __getattr__(self, attr): return TheType some_module = MyModule() def fn() -> some_module.Type: return some_module.Type(1) self.checkScript(fn, []) def test_ignore_with_types(self): @torch.jit.ignore def fn(x: Dict[str, Optional[torch.Tensor]]): return x + 10 class M(torch.nn.Module): def __init__(self): super(M, self).__init__() def forward(self, in_batch: Dict[str, Optional[torch.Tensor]]) -> torch.Tensor: self.dropout_modality(in_batch) fn(in_batch) return torch.tensor(1) @torch.jit.ignore def dropout_modality(self, in_batch: Dict[str, Optional[torch.Tensor]]) -> Dict[str, Optional[torch.Tensor]]: return in_batch sm = torch.jit.script(M()) FileCheck().check("dropout_modality").check("in_batch").run(str(sm.graph)) def test_python_callable(self): class MyPythonClass(object): @torch.jit.ignore def __call__(self, *args) -> str: return str(type(args[0])) the_class = MyPythonClass() @torch.jit.script def fn(x): return the_class(x) # This doesn't involve the string frontend, so don't use checkScript x = torch.ones(2) self.assertEqual(fn(x), the_class(x)) def test_bad_types(self): @torch.jit.ignore def fn(my_arg): return my_arg + 10 with self.assertRaisesRegex(RuntimeError, "argument 'my_arg'"): @torch.jit.script def other_fn(x): return fn('2') def test_named_tuple_slice_unpack(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(a : int, b : float, c : List[int]): tup = MyCoolNamedTuple(a, b, c) # noqa my_a, my_b, my_c = tup return tup[:1], my_a, my_c self.assertEqual(foo(3, 3.5, [6]), ((3,), 3, [6])) def test_named_tuple_lower(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(a : int): tup = MyCoolNamedTuple(a, 3.14, [9]) # noqa return tup FileCheck().check('TupleConstruct').run(foo.graph) torch._C._jit_pass_lower_all_tuples(foo.graph) FileCheck().check_not('TupleConstruct').run(foo.graph) def test_named_tuple_type_annotation(self): global MyCoolNamedTuple # see [local resolution in python] class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(x : MyCoolNamedTuple) -> MyCoolNamedTuple: return x mnt = MyCoolNamedTuple(42, 420.0, [666]) self.assertEqual(foo(mnt), mnt) def test_named_tuple_wrong_types(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] with self.assertRaisesRegex(RuntimeError, "Expected a value of type 'int' for argument 'a'" " but instead found type 'str'"): @torch.jit.script def foo(): tup = MyCoolNamedTuple('foo', 'bar', 'baz') # noqa return tup def test_named_tuple_kwarg_construct(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(): tup = MyCoolNamedTuple(c=[1, 2, 3], b=3.5, a=9) # noqa return tup tup = foo() self.assertEqual(tup.a, 9) self.assertEqual(tup.b, 3.5) self.assertEqual(tup.c, [1, 2, 3]) def test_named_tuple_default_error(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] = [3, 4, 5] with self.assertRaisesRegex(RuntimeError, 'Default values are currently not supported'): @torch.jit.script def foo(): tup = MyCoolNamedTuple(c=[1, 2, 3], b=3.5, a=9) # noqa return tup @unittest.skipIf(True, "broken while these tests were not in CI") def test_named_tuple_serialization(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] class MyMod(torch.jit.ScriptModule): @torch.jit.script_method def forward(self): return MyCoolNamedTuple(3, 3.5, [3, 4, 5]) mm = MyMod() mm.save('foo.zip') torch.testing._internal.jit_utils.clear_class_registry() loaded = torch.jit.load('foo.zip') out = mm() out_loaded = loaded() for name in ['a', 'b', 'c']: self.assertEqual(getattr(out_loaded, name), getattr(out, name)) def test_type_annotate_py3(self): def fn(): a : List[int] = [] b : torch.Tensor = torch.ones(2, 2) c : Optional[torch.Tensor] = None d : Optional[torch.Tensor] = torch.ones(3, 4) for _ in range(10): a.append(4) c = torch.ones(2, 2) d = None return a, b, c, d self.checkScript(fn, ()) def wrong_type(): wrong : List[int] = [0.5] return wrong with self.assertRaisesRegex(RuntimeError, "Lists must contain only a single type"): torch.jit.script(wrong_type) def test_subexpression_List_Future(self): @torch.jit.script def fn(x: List[torch.jit.Future[int]]) -> torch.jit.Future[int]: return x[0] FileCheck().check('Future[int]').check('Future[int]').run(fn.graph) def test_subexpression_Future_annotate(self): @torch.jit.script def fn() -> torch.jit.Future[int]: x: List[torch.jit.Future[int]] = [] return x[0] FileCheck().check("Future[int][]").run(fn.graph) def test_future_isinstance(self): @torch.jit.script def fn(x: Any) -> torch.jit.Future[int]: assert isinstance(x, jit.Future[int]) return x FileCheck().check("Future[int]").run(fn.graph) def test_subexpression_Tuple_int_int_Future(self): @torch.jit.script def fn(x: Tuple[int, int, torch.jit.Future[int]]) -> Tuple[int, torch.jit.Future[int]]: return x[0], x[2] FileCheck().check('(int, int, Future[int])').check('(int, Future[int])').run(fn.graph) def test_subexpression_Dict_int_Future(self): @torch.jit.script def fn(x: Dict[int, torch.jit.Future[int]], y: int) -> torch.jit.Future[int]: return x[y] FileCheck().check('Dict(int, Future(int))').check('Future[int]').run(fn.graph) def test_subexpression_Optional(self): @torch.jit.script def fn(x: Optional[Dict[int, torch.jit.Future[int]]]) -> Optional[torch.jit.Future[int]]: if x is not None: return x[0] else: return None FileCheck().check('Dict(int, Future(int))?').run(fn.graph) def test_unimported_type_resolution(self): # verify fallback from the python resolver to the c++ resolver @ torch.jit.script def fn(x): # type: (number) -> number return x + 1 FileCheck().check('Scalar').run(fn.graph) def test_parser_bug(self): def parser_bug(o: Optional[torch.Tensor]): pass def test_mismatched_annotation(self): with self.assertRaisesRegex(RuntimeError, 'annotated with type'): @torch.jit.script def foo(): x : str = 4 return x def test_reannotate(self): with self.assertRaisesRegex(RuntimeError, 'declare and annotate'): @torch.jit.script def foo(): x = 5 if True: x : Optional[int] = 7 def test_module_inplace_construct(self): class M(nn.Module): def __init__(self, start: int): super().__init__() self.linear = nn.Linear(3, 3) self.attribute = start self.parameter = nn.Parameter(torch.tensor(3, dtype=torch.float)) def method(self) -> int: return self.attribute @torch.jit.unused def unused_method(self): return self.attribute + self.attribute def forward(self, x): return self.linear(self.linear(x)) class N(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(4, 4) @torch.jit.ignore def ignored_method(self, x): return x def forward(self, x): return self.linear(x) m = torch.jit.script(M(3)) n = torch.jit.script(N()) n._reconstruct(m._c) inp = torch.rand((3)) # Check that both modules produce the same output. with torch.no_grad(): m_out = m(inp) n_out = n(inp) self.assertEqual(m_out, n_out) # Check that ignored method is still intact. self.assertEqual(inp, n.ignored_method(inp)) def test_export_opnames_interface(self): global OneTwoModule @torch.jit.interface class OneTwoModule(nn.Module): def one(self, x, y): # type: (Tensor, Tensor) -> Tensor pass def two(self, x): # type: (Tensor) -> Tensor pass def forward(self, x): # type: (Tensor) -> Tensor pass class FooMod(nn.Module): def one(self, x, y): # type: (Tensor, Tensor) -> Tensor return x + y def two(self, x): # type: (Tensor) -> Tensor return 2 * x def forward(self, x): # type: (Tensor) -> Tensor return self.one(self.two(x), x) class BarMod(nn.Module): def one(self, x, y): # type: (Tensor, Tensor) -> Tensor return x * y def two(self, x): # type: (Tensor) -> Tensor return 2 / x def forward(self, x): # type: (Tensor) -> Tensor return self.two(self.one(x, x)) class M(nn.Module): sub : OneTwoModule def __init__(self): super(M, self).__init__() self.sub = BarMod() def forward(self, x): # type: (Tensor) -> Tensor return self.sub.forward(x) def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor): return mod_list[0].forward(x) + mod_list[1].forward(x) scripted_M_mod = torch.jit.script(M()) # Temporarily test empty output because lite interpreter does not support interface call # Replace it with the issubset call when interface call is supported. self.assertTrue(len(torch.jit.export_opnames(scripted_M_mod)) == 0) # self.assertTrue(set(['aten::mul.Scalar', 'aten::mul.Tensor', 'aten::reciprocal']).issubset( # set(torch.jit.export_opnames(scripted_M_mod)))) scripted_M_mod.sub = torch.jit.script(FooMod()) self.assertTrue(len(torch.jit.export_opnames(scripted_M_mod)) == 0) # self.assertTrue(set(['aten::add.Tensor', 'aten::mul.Scalar']).issubset( # set(torch.jit.export_opnames(scripted_M_mod)))) if __name__ == '__main__': run_tests()