import argparse import datetime import tempfile from collections import defaultdict from dataclasses import dataclass from types import ModuleType from typing import Any, Optional, Protocol import torch from torch.autograd import DeviceType from torch.utils._ordered_set import OrderedSet from .runtime.benchmarking import benchmarker from .runtime.runtime_utils import create_bandwidth_info_str, get_num_bytes class BenchmarkCallableType(Protocol): def __call__(self, times: int, repeat: int) -> float: ... _kernel_category_choices = [ "foreach", "persistent_reduction", "pointwise", "reduction", "split_scan", "template", ] def get_kernel_category_by_source_code(src_code: str) -> str: """ Similar to get_kernel_category but use the source code. Call this API if we have not compile the src_code to module yet. """ choices = [ ch for ch in _kernel_category_choices if f"@triton_heuristics.{ch}" in src_code ] if len(choices) == 1: return choices[0] else: return "unknown" def get_kernel_category(kernel_mod: ModuleType) -> str: """ Given the module defining a triton kernel, return the category of the kernel. Category can be one of: - pointwise - reduction - persistent_reduction Currently we simply decide the category depending on what decorator is imported by the kernel. """ choices = [ch for ch in _kernel_category_choices if ch in kernel_mod.__dict__] if len(choices) == 1: return choices[0] else: return "unknown" def get_triton_kernel(mod: ModuleType): # type: ignore[no-untyped-def] from torch._inductor.runtime.triton_heuristics import CachingAutotuner cand_list = [ v for k, v in mod.__dict__.items() if k.startswith("triton_") and isinstance(v, CachingAutotuner) ] assert len(cand_list) == 1 return cand_list[0] def benchmark_all_kernels( benchmark_name: str, benchmark_all_configs: Optional[dict[Any, Any]] ) -> None: """ An experimental API used only when config.benchmark_kernel is true. Run the kernel benchmarks for all the kernels cached in PyCodeCache. Used in the compiled modules. Put this method here rather than codegen it for convenience since its implementation does not change based on different graph modules being compiled. """ from torch._inductor.codecache import PyCodeCache nfound = 0 for kernel_mod in PyCodeCache.modules: kernel_key = kernel_mod.key if not hasattr(kernel_mod, "get_args") or not hasattr(kernel_mod, "call"): continue triton_kernel = get_triton_kernel(kernel_mod) kernel_category = get_kernel_category(kernel_mod) args = kernel_mod.get_args() num_in_out_ptrs = len( [ arg_name for arg_name in triton_kernel.fn.arg_names if arg_name.startswith("in_out_ptr") ] ) num_gb = triton_kernel.inductor_meta.get("kernel_num_gb", None) if num_gb is None: num_gb = get_num_bytes(*args, num_in_out_args=num_in_out_ptrs) / 1e9 def get_info_str( ms: float, n_regs: Optional[Any], n_spills: Optional[Any], shared: Optional[Any], prefix: str = "", ) -> str: if not any(x is None for x in [n_regs, n_spills, shared]): kernel_detail_str = ( f" {n_regs:3} regs {n_spills:3} spills {shared:8} shared mem" ) else: kernel_detail_str = "" gb_per_s = num_gb / (ms / 1e3) return create_bandwidth_info_str( ms, num_gb, gb_per_s, prefix=prefix, suffix=kernel_detail_str ) kernel_desc = ( f"{benchmark_name:20} {kernel_category[:3].upper()} {kernel_key[:10]}" ) if benchmark_all_configs: assert hasattr(kernel_mod, "benchmark_all_configs") bench_result = kernel_mod.benchmark_all_configs(args) print(kernel_desc) for launcher, ms in bench_result.items(): print( f" {get_info_str(ms, launcher.n_regs, launcher.n_spills, launcher.shared)} @ {launcher.config}" ) else: ms = benchmarker.benchmark_gpu(lambda: kernel_mod.call(args), rep=40) assert len(triton_kernel.launchers) == 1, ( "Autotuner should have selected the best config" ) launcher = triton_kernel.launchers[0] print( get_info_str( ms, launcher.n_regs, launcher.n_spills, launcher.shared, prefix=f"{kernel_desc} ", ) ) nfound += 1 if nfound == 0: print( "No kernel with benchmark functionality found. Make sure you run inductor with config.benchmark_kernel being True" ) @dataclass class ProfileEvent: category: str key: str self_device_time_ms: float # the benchmark is run multiple times and we average the count across all the # runs. It should be an integer but define a float just in case. count: float def parse_profile_event_list( benchmark_name: str, event_list: torch.autograd.profiler_util.EventList, wall_time_ms: float, nruns: int, device_name: str, ) -> None: """ Parse and generate a report for an event_list. """ def get_self_device_time( ev: torch.autograd.profiler_util.EventList, ) -> float: """ ev.self_device_time_total is in microsecond. Convert to millisecond. """ return ev.self_device_time_total / 1000 / nruns # type: ignore[attr-defined] all_events: dict[str, list[ProfileEvent]] = defaultdict(list) def add_event( ev: torch.autograd.profiler_util.EventList, category: str, ) -> None: profile_ev = ProfileEvent( category=category, key=ev.key, # type: ignore[attr-defined] self_device_time_ms=get_self_device_time(ev), count=ev.count / nruns, # type: ignore[operator] # average across all runs ) all_events[category].append(profile_ev) for ev in event_list: assert not ev.is_legacy, "Don't support the legacy profiler" if ev.device_type == DeviceType.CPU: # ignore the event on CPU side continue category = "unknown" if ev.key.startswith("triton_"): if ev.key.startswith("triton_poi"): category = "triton_pointwise" elif ev.key.startswith("triton_red"): category = "triton_reduction" elif ev.key.startswith("triton_per"): category = "triton_persistent_reduction" else: category = "triton_unknown" add_event(ev, category) def report_category(category: str, profile_events: list[ProfileEvent]) -> float: if not device_name: return 0.0 from tabulate import tabulate profile_events.sort(key=lambda ev: ev.self_device_time_ms, reverse=True) rows = [] total_time = 0.0 print(f"\n == {category} category kernels == ") for ev in profile_events: total_time += ev.self_device_time_ms percent = f"{ev.self_device_time_ms / wall_time_ms * 100:.2f}%" rows.append([ev.key[:120], ev.self_device_time_ms, ev.count, percent]) rows.append( ["Total", total_time, "", f"{total_time / wall_time_ms * 100:.2f}%"] ) print( tabulate( rows, headers=[ "Kernel", f"Self {device_name.upper()} TIME (ms)", "Count", "Percent", ], ) ) return total_time def report() -> None: category_list = [ "triton_pointwise", "triton_reduction", "triton_persistent_reduction", "triton_unknown", "unknown", ] assert OrderedSet(all_events.keys()).issubset(OrderedSet(category_list)), ( f"{list(all_events.keys())}" ) per_category_wall_time = {} total_device_ms = 0.0 for category in category_list: if category in all_events: _time = report_category(category, all_events[category]) per_category_wall_time[category] = _time total_device_ms += _time device_busy_percent = f"{total_device_ms / wall_time_ms * 100:.2f}%" if device_name: print( f"\nPercent of time when {device_name.upper()} is busy: {device_busy_percent}" ) else: print("No device detected") print(f"Total wall time {wall_time_ms:.3f} ms") # output such a line so we can gather such line from all compiled modules from all # benchmarks and tabulate it! # Columns: benchmark_name, pointwise_percent, reduction_percent, persistent_reduction_percent, # unknown_category_percent, device_busy_percent, wall_time_ms tabulate_line = f"Output for tabulate: {benchmark_name}" for category in category_list: percent = ( f"{per_category_wall_time.get(category, 0.0) / wall_time_ms * 100:.2f}%" ) tabulate_line += f", {percent}" tabulate_line += f", {device_busy_percent}, {wall_time_ms:.3f}ms" print(tabulate_line) report() PROFILE_DIR = tempfile.gettempdir() PROFILE_PATH = f"{PROFILE_DIR}/compiled_module_profile.json" def perf_profile( wall_time_ms: float, times: int, repeat: int, benchmark_name: str, benchmark_compiled_module_fn: BenchmarkCallableType, ) -> None: with torch.profiler.profile(record_shapes=True) as p: benchmark_compiled_module_fn(times=times, repeat=repeat) path = PROFILE_PATH p.export_chrome_trace(path) print(f"Profiling result for a compiled module of benchmark {benchmark_name}:") print(f"Chrome trace for the profile is written to {path}") event_list = p.key_averages(group_by_input_shape=True) print(event_list.table(sort_by="self_device_time_total", row_limit=10)) parse_profile_event_list( benchmark_name, event_list, wall_time_ms, times * repeat, p.use_device or "" ) def ncu_analyzer( benchmark_name: str, benchmark_compiled_module_fn: BenchmarkCallableType, args: argparse.Namespace, ) -> None: import inspect import os import subprocess kernel_regex = args.ncu_kernel_regex metrics = args.ncu_metrics module_file = inspect.getfile(benchmark_compiled_module_fn) module_dir = os.path.dirname(module_file) module_name = os.path.splitext(os.path.basename(module_file))[0] ncu_dir = tempfile.gettempdir() timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") ncu_output = os.path.join(ncu_dir, f"ncu_output_{timestamp}.ncu-rep") python_cmd = ( f"""import sys; sys.path.insert(0, '{module_dir}'); """ f"""from {module_name} import benchmark_compiled_module; """ """benchmark_compiled_module(times=1, repeat=1)""" ) ncu_cmd = [ "ncu", "--target-processes", "all", "--replay-mode", "kernel", "--kernel-name-base", "function", "--print-units", "base", "--import-source", "yes", "--force-overwrite", "--export", ncu_output, ] if kernel_regex: ncu_cmd.extend(["--kernel-name", f"regex:{kernel_regex}"]) if metrics: ncu_cmd.extend(["--metrics", metrics]) else: ncu_cmd.extend(["--set", "full"]) ncu_cmd.extend( [ "python", "-c", python_cmd, ] ) try: subprocess.run(ncu_cmd, check=True) print(f"\nNCU profiling results for benchmark {benchmark_name}:") print(f"NCU report has been written to {ncu_output}") except subprocess.CalledProcessError as e: print(f"NCU profiling failed with error: {e}") return def collect_memory_snapshot( benchmark_compiled_module_fn: BenchmarkCallableType, ) -> None: assert torch.cuda.is_available() torch.cuda.memory._record_memory_history(max_entries=100000) benchmark_compiled_module_fn(times=10, repeat=1) # run 10 times snapshot_path = f"{tempfile.gettempdir()}/memory_snapshot.pickle" torch.cuda.memory._dump_snapshot(snapshot_path) torch.cuda.memory._record_memory_history(enabled=None) print(f"The collect memory snapshot has been written to {snapshot_path}") # With AOTAutograd cache, we directly call the compiled module. So prevent # Dynamo from reentering @torch.compiler.disable # type: ignore[misc] def compiled_module_main( benchmark_name: str, benchmark_compiled_module_fn: BenchmarkCallableType ) -> None: """ This is the function called in __main__ block of a compiled module. """ import argparse parser = argparse.ArgumentParser() parser.add_argument( "--benchmark-kernels", "-k", action="store_true", help="Whether to benchmark each individual kernels", ) parser.add_argument( "--benchmark-all-configs", "-c", action="store_true", help="Whether to benchmark each individual config for a kernel", ) parser.add_argument( "--profile", "-p", action="store_true", help="Whether to profile the compiled module", ) parser.add_argument( "--cuda-memory-snapshot", action="store_true", help=""" Whether to collect CUDA memory snapshot. Refer to "https://pytorch.org/blog/understanding-gpu-memory-1/ for details about how to visualize the collected snapshot """, ) parser.add_argument( "--ncu", action="store_true", help="Whether to run ncu analysis", ) parser.add_argument( "--ncu-kernel-regex", type=str, default=None, help=( "Filter kernels profiled by NCU using a regex (e.g., '^triton_.*'). " "Maps to '--kernel-name regex:'. " "If None, NCU will profile all kernels." ), ) parser.add_argument( "--ncu-metrics", type=str, default=None, help=( "Comma-separated list of NCU metrics to collect (e.g., 'dram__bytes.sum.per_second'). " "If None, NCU will use '--set full'." ), ) parser.add_argument( "--times", type=int, default=10, help="Number of times to run each benchmark iteration", ) parser.add_argument( "--repeat", type=int, default=10, help="Number of repetitions of each benchmark run", ) args = parser.parse_args() if args.benchmark_kernels: benchmark_all_kernels(benchmark_name, args.benchmark_all_configs) else: times = args.times repeat = args.repeat if torch.cuda.is_available(): torch.cuda.reset_peak_memory_stats() wall_time_ms = benchmark_compiled_module_fn(times=times, repeat=repeat) * 1000 if torch.cuda.is_available(): peak_mem = torch.cuda.max_memory_allocated() print(f"Peak GPU memory usage {peak_mem / 1e6:.3f} MB") if torch.cuda.is_available() and args.cuda_memory_snapshot: collect_memory_snapshot(benchmark_compiled_module_fn) if args.profile: perf_profile( wall_time_ms, times, repeat, benchmark_name, benchmark_compiled_module_fn, ) if args.ncu: ncu_analyzer( benchmark_name, benchmark_compiled_module_fn, args=args, )