# ${generated_comment} # mypy: disable-error-code="type-arg" from collections.abc import Sequence from typing import Literal, overload from torch import memory_format, Tensor from torch.types import _bool, _device, _dtype, _int, _size # Defined in tools/autograd/templates/python_nn_functions.cpp ${c_nn_function_hints} # Defined in aten/src/ATen/native/mkldnn/Linear.cpp def mkldnn_linear(input: Tensor, weight: Tensor, bias: Tensor | None) -> Tensor: ... # Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp def mkldnn_reorder_conv2d_weight( self: Tensor, padding: list, stride: list, dilatation: list, groups: int, ) -> Tensor: ... def mkldnn_reorder_conv3d_weight( self: Tensor, padding: list, stride: list, dilatation: list, groups: int, ) -> Tensor: ... # Defined in aten/src/ATen/native/mkldnn/Prelu.cpp def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ... # Defined at tools/autograd/templates/python_nn_functions.cpp @overload def _parse_to( device: _device, dtype: _dtype, non_blocking: _bool, copy: _bool, *, memory_format: memory_format, ) -> tuple[_device, _dtype, _bool, memory_format]: ... @overload def _parse_to( dtype: _dtype, non_blocking: _bool, copy: _bool, *, memory_format: memory_format, ) -> tuple[_device, _dtype, _bool, memory_format]: ... @overload def _parse_to( tensor: Tensor, non_blocking: _bool, copy: _bool, *, memory_format: memory_format, ) -> tuple[_device, _dtype, _bool, memory_format]: ... # Defined in aten/src/ATen/native/PackedSequence.cpp def pad_sequence( sequences: list[Tensor] | tuple[Tensor, ...], batch_first: bool = False, padding_value: float = 0.0, padding_side: Literal["left", "right"] = "right", ) -> Tensor: ... # Upsample functions used by torch.nn.functional.interpolate def upsample_nearest1d( input: Tensor, output_size: Sequence[int] | None, scale_factors: Sequence[float] | None, ) -> Tensor: ... def upsample_nearest2d( input: Tensor, output_size: Sequence[int] | None, scale_factors: Sequence[float] | None, ) -> Tensor: ... def upsample_nearest3d( input: Tensor, output_size: Sequence[int] | None, scale_factors: Sequence[float] | None, ) -> Tensor: ... def _upsample_nearest_exact1d( input: Tensor, output_size: Sequence[int] | None, scale_factors: Sequence[float] | None, ) -> Tensor: ... def _upsample_nearest_exact2d( input: Tensor, output_size: Sequence[int] | None, scale_factors: Sequence[float] | None, ) -> Tensor: ... def _upsample_nearest_exact3d( input: Tensor, output_size: Sequence[int] | None, scale_factors: Sequence[float] | None, ) -> Tensor: ... def upsample_linear1d( input: Tensor, output_size: Sequence[int] | None, align_corners: bool, scale_factors: Sequence[float] | None, ) -> Tensor: ... def _upsample_bilinear2d_aa( input: Tensor, output_size: Sequence[int] | None, align_corners: bool, scale_factors: Sequence[float] | None, ) -> Tensor: ... def upsample_bilinear2d( input: Tensor, output_size: Sequence[int] | None, align_corners: bool, scale_factors: Sequence[float] | None, ) -> Tensor: ... def upsample_trilinear3d( input: Tensor, output_size: Sequence[int] | None, align_corners: bool, scale_factors: Sequence[float] | None, ) -> Tensor: ... def _upsample_bicubic2d_aa( input: Tensor, output_size: Sequence[int] | None, align_corners: bool, scale_factors: Sequence[float] | None, ) -> Tensor: ... def upsample_bicubic2d( input: Tensor, output_size: Sequence[int] | None, align_corners: bool, scale_factors: Sequence[float] | None, ) -> Tensor: ... def flatten_dense_tensors(tensors: list[Tensor]) -> Tensor: ... def unflatten_dense_tensors(flat: Tensor, tensors: list[Tensor]) -> list[Tensor]: ...