# Owner(s): ["oncall: quantization"] import torch from torch.testing._internal.common_quantization import ( ModelMultipleOps, ModelMultipleOpsNoAvgPool, QuantizationTestCase, ) from torch.testing._internal.common_quantized import ( override_quantized_engine, supported_qengines, ) class TestModelNumericsEager(QuantizationTestCase): def test_float_quant_compare_per_tensor(self): for qengine in supported_qengines: with override_quantized_engine(qengine): torch.manual_seed(42) my_model = ModelMultipleOps().to(torch.float32) my_model.eval() calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32) out_ref = my_model(eval_data) qModel = torch.ao.quantization.QuantWrapper(my_model) qModel.eval() qModel.qconfig = torch.ao.quantization.default_qconfig torch.ao.quantization.fuse_modules( qModel.module, [["conv1", "bn1", "relu1"]], inplace=True ) torch.ao.quantization.prepare(qModel, inplace=True) qModel(calib_data) torch.ao.quantization.convert(qModel, inplace=True) out_q = qModel(eval_data) SQNRdB = 20 * torch.log10( torch.norm(out_ref) / torch.norm(out_ref - out_q) ) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired # output self.assertGreater( SQNRdB, 30, msg="Quantized model numerics diverge from float, expect SQNR > 30 dB", ) def test_float_quant_compare_per_channel(self): # Test for per-channel Quant torch.manual_seed(67) my_model = ModelMultipleOps().to(torch.float32) my_model.eval() calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) out_ref = my_model(eval_data) q_model = torch.ao.quantization.QuantWrapper(my_model) q_model.eval() q_model.qconfig = torch.ao.quantization.default_per_channel_qconfig torch.ao.quantization.fuse_modules( q_model.module, [["conv1", "bn1", "relu1"]], inplace=True ) torch.ao.quantization.prepare(q_model) q_model(calib_data) torch.ao.quantization.convert(q_model) out_q = q_model(eval_data) SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 35 dB self.assertGreater( SQNRdB, 35, msg="Quantized model numerics diverge from float, expect SQNR > 35 dB", ) def test_fake_quant_true_quant_compare(self): for qengine in supported_qengines: with override_quantized_engine(qengine): torch.manual_seed(67) my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) my_model.eval() out_ref = my_model(eval_data) fq_model = torch.ao.quantization.QuantWrapper(my_model) fq_model.train() fq_model.qconfig = torch.ao.quantization.default_qat_qconfig torch.ao.quantization.fuse_modules_qat( fq_model.module, [["conv1", "bn1", "relu1"]], inplace=True ) torch.ao.quantization.prepare_qat(fq_model) fq_model.eval() fq_model.apply(torch.ao.quantization.disable_fake_quant) fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats) fq_model(calib_data) fq_model.apply(torch.ao.quantization.enable_fake_quant) fq_model.apply(torch.ao.quantization.disable_observer) out_fq = fq_model(eval_data) SQNRdB = 20 * torch.log10( torch.norm(out_ref) / torch.norm(out_ref - out_fq) ) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 35 dB self.assertGreater( SQNRdB, 35, msg="Quantized model numerics diverge from float, expect SQNR > 35 dB", ) torch.ao.quantization.convert(fq_model) out_q = fq_model(eval_data) SQNRdB = 20 * torch.log10( torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10) ) self.assertGreater( SQNRdB, 60, msg="Fake quant and true quant numerics diverge, expect SQNR > 60 dB", ) # Test to compare weight only quantized model numerics and # activation only quantized model numerics with float def test_weight_only_activation_only_fakequant(self): for qengine in supported_qengines: with override_quantized_engine(qengine): torch.manual_seed(67) calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) qconfigset = { torch.ao.quantization.default_weight_only_qconfig, torch.ao.quantization.default_activation_only_qconfig, } SQNRTarget = [35, 45] for idx, qconfig in enumerate(qconfigset): my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) my_model.eval() out_ref = my_model(eval_data) fq_model = torch.ao.quantization.QuantWrapper(my_model) fq_model.train() fq_model.qconfig = qconfig torch.ao.quantization.fuse_modules_qat( fq_model.module, [["conv1", "bn1", "relu1"]], inplace=True ) torch.ao.quantization.prepare_qat(fq_model) fq_model.eval() fq_model.apply(torch.ao.quantization.disable_fake_quant) fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats) fq_model(calib_data) fq_model.apply(torch.ao.quantization.enable_fake_quant) fq_model.apply(torch.ao.quantization.disable_observer) out_fq = fq_model(eval_data) SQNRdB = 20 * torch.log10( torch.norm(out_ref) / torch.norm(out_ref - out_fq) ) self.assertGreater( SQNRdB, SQNRTarget[idx], msg="Quantized model numerics diverge from float", ) if __name__ == "__main__": raise RuntimeError( "This test file is not meant to be run directly, use:\n\n" "\tpython test/test_quantization.py TESTNAME\n\n" "instead." )