from torchvision import models import torch import torch.autograd.profiler as profiler for with_cuda in [False, True]: model = models.resnet18() inputs = torch.randn(5, 3, 224, 224) sort_key = "self_cpu_memory_usage" if with_cuda and torch.cuda.is_available(): model = model.cuda() inputs = inputs.cuda() sort_key = "self_cuda_memory_usage" print("Profiling CUDA Resnet model") else: print("Profiling CPU Resnet model") with profiler.profile(profile_memory=True, record_shapes=True) as prof: with profiler.record_function("root"): model(inputs) print( prof.key_averages(group_by_input_shape=True).table( sort_by=sort_key, row_limit=-1 ) )