import torch import torch.onnx.symbolic_helper as sym_help from torch.onnx.symbolic_helper import parse_args, _parse_arg # EDITING THIS FILE? READ THIS FIRST! # see Note [Edit Symbolic Files] in symbolic_helper.py # This file exports ONNX ops for opset 12 @parse_args('s', 'v') def einsum(g, equation, tensor_list): tensors = sym_help._unpack_list(tensor_list) return g.op("Einsum", *tensors, equation_s=equation) @parse_args('v', 'f', 'i') def dropout(g, input, p, train): sym_help.assert_training_mode(train, "dropout") # in eval mode, dropout is non-op - if the node's train param is set to False, dropout is non-op if not sym_help._training_mode: return input p = g.op("Constant", value_t=torch.tensor(p)) t = g.op("Constant", value_t=torch.tensor(True)) r, _ = g.op("Dropout", input, p, t, outputs=2) return r def nll_loss(g, self, target, weight, reduction, ignore_index): # none reduction : onnx::Constant[value={0}] # mean reduction : onnx::Constant[value={1}] # sum reduction : onnx::Constant[value={2}] reduction = sym_help._maybe_get_const(reduction, 'i') reduction_vals = ['none', 'mean', 'sum'] reduction = reduction_vals[reduction] # in onnx NegativeLogLikelihoodLoss specification, ignore_index is optional without default value. # therefore we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100). ignore_index = sym_help._maybe_get_const(ignore_index, 'i') if weight.node().mustBeNone(): nllloss = g.op("NegativeLogLikelihoodLoss", self, target, reduction_s=reduction, ignore_index_i=ignore_index) else: nllloss = g.op("NegativeLogLikelihoodLoss", self, target, weight, reduction_s=reduction, ignore_index_i=ignore_index) return nllloss def nll_loss2d(g, self, target, weight, reduction, ignore_index): return nll_loss(g, self, target, weight, reduction, ignore_index) def celu(g, self, alpha): alpha = sym_help._maybe_get_const(alpha, 'f') # if the input is of type double cast it to float if self.type().scalarType() == 'Double': self = g.op("Cast", self, to_i=sym_help.cast_pytorch_to_onnx['Float']) out = g.op("Celu", self, alpha_f=alpha) return g.op("Cast", out, to_i=sym_help.cast_pytorch_to_onnx['Double']) return g.op("Celu", self, alpha_f=alpha) def argmax(g, input, dim, keepdim): if sym_help._is_none(dim): from torch.onnx.symbolic_opset9 import reshape flattened = reshape(g, input, g.op("Constant", value_t=torch.tensor([-1]))) return g.op('ArgMax', flattened, axis_i=0, keepdims_i=False, select_last_index_i=False) else: dim = _parse_arg(dim, 'i') keepdim = _parse_arg(keepdim, 'i') return g.op('ArgMax', input, axis_i=dim, keepdims_i=keepdim, select_last_index_i=False) def argmin(g, input, dim, keepdim): if sym_help._is_none(dim): from torch.onnx.symbolic_opset9 import reshape flattened = reshape(g, input, g.op("Constant", value_t=torch.tensor([-1]))) return g.op('ArgMin', flattened, axis_i=0, keepdims_i=False, select_last_index_i=False) else: dim = _parse_arg(dim, 'i') keepdim = _parse_arg(keepdim, 'i') return g.op('ArgMin', input, axis_i=dim, keepdims_i=keepdim, select_last_index_i=False) def pow(g, self, exponent): return g.op("Pow", self, exponent) def ge(g, input, other): return g.op('GreaterOrEqual', input, other) def le(g, input, other): return g.op('LessOrEqual', input, other)