"""Freezing This is not intended to be imported directly; please use the exposed functionalities in `torch.jit`. """ from typing import Optional, List import torch from torch.jit._script import RecursiveScriptModule, ScriptModule def freeze(mod, preserved_attrs: Optional[List[str]] = None): r""" Freezing a :class:`ScriptModule` will clone it and attempt to inline the cloned module's submodules, parameters, and attributes as constants in the TorchScript IR Graph. By default, `forward` will be preserved, as well as attributes & methods specified in `preserved_attrs`. Additionally, any attribute that is modified within a preserved method will be preserved. Freezing currently only accepts ScriptModules that are in eval mode. Arguments: mod (:class:`ScriptModule`): a module to be frozen preserved_attrs (Optional[List[str]]): a list of attributes to preserve in addition to the forward method. Attributes modified in preserved methods will also be preserved. Returns: Frozen :class:`ScriptModule`. Example (Freezing a simple module with a Parameter): .. testcode:: import torch class MyModule(torch.nn.Module): def __init__(self, N, M): super(MyModule, self).__init__() self.weight = torch.nn.Parameter(torch.rand(N, M)) self.linear = torch.nn.Linear(N, M) def forward(self, input): output = self.weight.mm(input) output = self.linear(output) return output scripted_module = torch.jit.script(MyModule(2, 3).eval()) frozen_module = torch.jit.freeze(scripted_module) # parameters have been removed and inlined into the Graph as constants assert len(list(frozen_module.named_parameters())) == 0 # See the compiled graph as Python code print(frozen_module.code) Example (Freezing a module with preserved attributes) .. testcode:: import torch class MyModule2(torch.nn.Module): def __init__(self): super(MyModule2, self).__init__() self.modified_tensor = torch.tensor(10.) self.version = 1 def forward(self, input): self.modified_tensor += 1 return input + self.modified_tensor scripted_module = torch.jit.script(MyModule2().eval()) frozen_module = torch.jit.freeze(scripted_module, preserved_attrs=["version"]) # we've manually preserved `version`, so it still exists on the frozen module and can be modified assert frozen_module.version == 1 frozen_module.version = 2 # `modified_tensor` is detected as being mutated in the forward, so freezing preserves # it to retain model semantics assert frozen_module(torch.tensor(1)) == torch.tensor(12) # now that we've run it once, the next result will be incremented by one assert frozen_module(torch.tensor(1)) == torch.tensor(13) Note: If you're not sure why an attribute is not being inlined as a constant, you can run `dump_alias_db` on frozen_module.forward.graph to see if freezing has detected the attribute is being modified. """ if not isinstance(mod, ScriptModule): raise RuntimeError( "Freezing expects a ScriptModule as input. " "Please use torch.jit.script or torch.jit.trace to script your 'nn.Module'." ) if mod.training: raise RuntimeError( "Freezing is currently only implemented for modules in eval mode. " "Please call .eval() on your module before freezing." ) preserved_attrs = preserved_attrs if preserved_attrs is not None else [] out = RecursiveScriptModule(torch._C._freeze_module(mod._c, preserved_attrs)) RecursiveScriptModule._finalize_scriptmodule(out) return out