#pragma once #include "test/cpp/jit/test_base.h" #include #include "ATen/core/interned_strings.h" #include "torch/csrc/autograd/generated/variable_factories.h" #include "torch/csrc/autograd/variable.h" #include "torch/csrc/jit/argument_spec.h" #include "torch/csrc/jit/attributes.h" #include "torch/csrc/jit/autodiff.h" #include "torch/csrc/jit/code_template.h" #include "torch/csrc/jit/custom_operator.h" #include "torch/csrc/jit/dynamic_dag.h" #include "torch/csrc/jit/fuser/interface.h" #include "torch/csrc/jit/import.h" #include "torch/csrc/jit/interpreter.h" #include "torch/csrc/jit/passes/alias_analysis.h" #include "torch/csrc/jit/passes/common_subexpression_elimination.h" #include "torch/csrc/jit/passes/constant_propagation.h" #include "torch/csrc/jit/passes/create_autodiff_subgraphs.h" #include "torch/csrc/jit/passes/dead_code_elimination.h" #include "torch/csrc/jit/passes/graph_fuser.h" #include "torch/csrc/jit/passes/lower_grad_of.h" #include "torch/csrc/jit/passes/lower_tuples.h" #include "torch/csrc/jit/passes/requires_grad_analysis.h" #include "torch/csrc/jit/passes/shape_analysis.h" #include "torch/csrc/jit/passes/utils/subgraph_utils.h" #include "torch/csrc/jit/symbolic_script.h" #include "torch/csrc/jit/symbolic_variable.h" #include "torch/csrc/jit/tracer.h" #include "torch/csrc/utils/hash.h" #include "torch/csrc/utils/memory.h" #include "torch/csrc/autograd/engine.h" #include "torch/csrc/autograd/variable.h" #include #include "ATen/core/ivalue.h" #include "torch/csrc/jit/graph_executor.h" #include "torch/csrc/jit/script/compiler.h" #include "torch/csrc/jit/script/module.h" #include "onnx/onnx_pb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { namespace { using Var = SymbolicVariable; void testFusion() { auto testSimple = [&] { Graph graph; Var i0 = Var::asNewInput(graph); Var i1 = Var::asNewInput(graph); auto o0 = i0 * i1; o0.addAsOutput(); auto a = at::rand({3, 4}, at::kCUDA); auto b = at::rand({4, 3}, at::kCUDA).transpose(0, 1); auto o = at::zeros({3, 4}, at::kCUDA); auto outputs = debugLaunchGraph(graph, {a, b}); ASSERT_EQ(outputs.size(), 1); auto o2 = a * b; float max_diff = (o2 - outputs[0]).abs().max().item(); // std::cout << "max diff: " << max_diff << "\n"; ASSERT_EQ(max_diff, 0); }; testSimple(); auto testOne = [&](int ti, int tj) { Graph graph; Var i0 = Var::asNewInput(graph); Var i1 = Var::asNewInput(graph); Var i2 = Var::asNewInput(graph); Var i3 = Var::asNewInput(graph); Var i4 = Var::asNewInput(graph); auto p22 = i4.sigmoid(); auto p20 = i3.sigmoid(); auto p18 = i2.tanh(); auto p16 = i1.sigmoid(); auto p14 = p20 * i0; auto p11 = p22 * p18; auto o1 = p14 + p11; auto p5 = o1.tanh(); auto o0 = p16 * p5; o0.addAsOutput(); o1.addAsOutput(); graph.lint(); std::vector inputs; // We want to generate input/output tensors with dimension 128x128x32, but // with different internal strides. To do this, we generate a tensor // with the "wrong" dimensions, and then use transpose to get an // appropriately sized view. for (size_t i = 0; i < graph.inputs().size(); i++) { std::vector dims = {128, 128, 32}; std::swap(dims[ti], dims[tj]); inputs.push_back(at::rand(dims, at::kCUDA).transpose(ti, tj)); } auto t22 = inputs[4].sigmoid(); auto t20 = inputs[3].sigmoid(); auto t18 = inputs[2].tanh(); auto t16 = inputs[1].sigmoid(); auto t14 = t20 * inputs[0]; auto t11 = t22 * t18; auto out1 = t14 + t11; auto t5 = out1.tanh(); auto out0 = t16 * t5; auto outputs = debugLaunchGraph(graph, inputs); ASSERT_EQ(outputs.size(), graph.outputs().size()); ASSERT_TRUE(out0.is_same_size(outputs.front())); float max_diff = (outputs.front() - out0).abs().max().item(); ASSERT_TRUE(max_diff < 1e-6); }; testOne(0, 0); testOne(0, 1); testOne(1, 2); testOne(0, 2); auto createFusedConcat = [](Graph& graph, at::ArrayRef inputs, int64_t dim) -> Value* { return graph .insertNode(graph.create(prim::FusedConcat, inputs)->i_(attr::dim, dim)) ->output(); }; auto testConcat = [&](int dim) { Graph graph; Var i0 = Var::asNewInput(graph); Var i1 = Var::asNewInput(graph); auto o0 = i0 * i1; o0.addAsOutput(); Var(createFusedConcat(graph, {i0, o0}, dim)).addAsOutput(); auto a = at::rand({3, 4, 5}, at::kCUDA); auto b = at::rand({4, 3, 5}, at::kCUDA).transpose(0, 1); auto o_r = a * b; auto o2_r = at::cat({a, o_r}, dim); auto outputs = debugLaunchGraph(graph, {a, b}); ASSERT_EQ(outputs.size(), 2); float max_diff = (o_r - outputs[0]).abs().max().item(); ASSERT_EQ(max_diff, 0); float max_diff2 = (o2_r - outputs[1]).abs().max().item(); ASSERT_EQ(max_diff2, 0); }; testConcat(0); testConcat(1); testConcat(2); } void testRegisterFusionCachesKernel(std::ostream& out = std::cout) { // Build up a fake graph with a FusionGroup auto createGraphWithNames = [](std::string cname, std::string dname) { auto graph = std::make_shared(); at::ScalarType s = at::ScalarType::Float; auto type = CompleteTensorType::create(s, at::kCPU, {2, 3, 4}, {12, 4, 1}); auto a = SymbolicVariable::asNewInput(*graph, type); auto b = SymbolicVariable::asNewInput(*graph, type); auto c = a * b; auto d = c * a; c.value()->setDebugName(cname); d.value()->setDebugName(dname); graph->registerOutput(d.value()); torch::jit::overrideCanFuseOnCPU(true); FuseGraph(graph); torch::jit::overrideCanFuseOnCPU(false); return graph; }; auto getFusionGroup = [](const std::shared_ptr& graph) { const auto& nodes = graph->nodes(); auto maybe_fusion_group = std::find_if(nodes.begin(), nodes.end(), [](const Node* node) { return node->kind() == prim::FusionGroup; }); TORCH_CHECK( maybe_fusion_group != nodes.end(), "testRegisterFusionCachesKernel: could not create FusionGroup"); return *maybe_fusion_group; }; // Create two alpha-equivalent fusion groups auto graph1 = createGraphWithNames("c1", "d1"); auto fg1 = getFusionGroup(graph1); auto graph2 = createGraphWithNames("c2", "d2"); auto fg2 = getFusionGroup(graph2); // Register both with the fusion compiler. auto expected_key = registerFusion(fg1); auto second_key = registerFusion(fg2); // Because the graphs are alpha-equivalent, they should return the same key // and therefore share a KernelSpec to share kernels for specializations ASSERT_EQ(second_key, expected_key); } } // namespace } // namespace jit } // namespace torch