Summary:
Added a new option in AutogradContext to tell autograd to not materialize output grad tensors, that is, don't expand undefined/None tensors into tensors full of zeros before passing them as input to the backward function.
This PR is the second part that closes https://github.com/pytorch/pytorch/issues/41359. The first PR is https://github.com/pytorch/pytorch/pull/41490.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41821
Reviewed By: albanD
Differential Revision: D22693163
Pulled By: heitorschueroff
fbshipit-source-id: a8d060405a17ab1280a8506a06a2bbd85cb86461
Summary:
This PR creates a new namespace, torch.fft (torch::fft) and puts a single function, fft, in it. This function is analogous to is a simplified version of NumPy's [numpy.fft.fft](https://numpy.org/doc/1.18/reference/generated/numpy.fft.fft.html?highlight=fft#numpy.fft.fft) that accepts no optional arguments. It is intended to demonstrate how to add and document functions in the namespace, and is not intended to deprecate the existing torch.fft function.
Adding this namespace was complicated by the existence of the torch.fft function in Python. Creating a torch.fft Python module makes this name ambiguous: does it refer to a function or module? If the JIT didn't exist, a solution to this problem would have been to make torch.fft refer to a callable class that mimicked both the function and module. The JIT, however, cannot understand this pattern. As a workaround it's required to explicitly `import torch.fft` to access the torch.fft.fft function in Python:
```
import torch.fft
t = torch.randn(128, dtype=torch.cdouble)
torch.fft.fft(t)
```
See https://github.com/pytorch/pytorch/issues/42175 for future work. Another possible future PR is to get the JIT to understand torch.fft as a callable class so it need not be imported explicitly to be used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41911
Reviewed By: glaringlee
Differential Revision: D22941894
Pulled By: mruberry
fbshipit-source-id: c8e0b44cbe90d21e998ca3832cf3a533f28dbe8d
Summary:
For CUDA >= 10.2, the `CUBLAS_WORKSPACE_CONFIG` environment variable must be set to either `:4096:8` or `:16:8` to ensure deterministic CUDA stream usage. This PR adds some logic inside `torch.set_deterministic()` to raise an error if this environment variable is not set properly and CUDA >= 10.2.
Issue https://github.com/pytorch/pytorch/issues/15359
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41377
Reviewed By: malfet
Differential Revision: D22758459
Pulled By: ezyang
fbshipit-source-id: 4b96f1e9abf85d94ba79140fd927bbd0c05c4522
Summary: function `cross_kernel_scalar` is not covered in `Aten/native/cpu/CrossKernel.cpp`, add tests to cover it
Test Plan:
1. Test locally to check new lines are covered
2. CI
https://pxl.cl/1fZjG
Reviewed By: malfet
Differential Revision: D22834122
fbshipit-source-id: 0d50f3a3e6aee52cb6fdee2b9f5883f542c7b6e2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42266
function `lerp_kernel_scalar` and `lerp_kernel_tensor` are not covered in `Aten/native/cpu/LerpKernel.cpp`, add tests to cover them
Test Plan:
1. Test locally to check new lines are covered
2. CI
https://pxl.cl/1fXPd
Reviewed By: malfet
Differential Revision: D22832164
fbshipit-source-id: b1eaabbf8bfa08b4dedc1a468abfdfb619a50e3c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42037
This is to fix#41951
Test Plan: Imported from OSS
Reviewed By: yf225
Differential Revision: D22764717
Pulled By: glaringlee
fbshipit-source-id: e6da0aeb05a2356f52446e6d5fad391f2cd1cf6f
Summary:
Leave undefined tensors / None returned from custom backward functions as undefined/None instead of creating a tensor full of zeros. This change improves performance in some cases.
**This is BC-Breaking:** Custom backward functions that return None will now see it potentially being propagated all the way up to AccumulateGrad nodes. Potential impact is that .grad field of leaf tensors as well as the result of autograd.grad may be undefined/None where it used to be a tensor full of zeros. Also, autograd.grad may raise an error, if so, consider using allow_unused=True ([see doc](https://pytorch.org/docs/stable/autograd.html?highlight=autograd%20grad#torch.autograd.grad)) if it applies to your case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41490
Reviewed By: albanD
Differential Revision: D22578241
Pulled By: heitorschueroff
fbshipit-source-id: f4966f4cb520069294f8c5c1691eeea799cc0abe
Summary:
Update the API to access grad in cpp to avoid unexpected thread safety issues.
In particular, with the current API, a check like `t.grad().defined()` is not thread safe.
- This introduces `t.mutable_grad()` that should be used when getting a mutable version of the saved gradient. This function is **not** thread safe.
- The `Tensor& grad()` API is now removed. We could not do a deprecation cycle as most of our call side use non-const Tensors that use the non-const overload. This would lead to most calls hitting the warning. This would be too verbose for all the users.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40887
Reviewed By: ezyang
Differential Revision: D22343932
Pulled By: albanD
fbshipit-source-id: d5eb909bb743bc20caaf2098196e18ca4110c5d2
Summary:
Fixes https://github.com/pytorch/pytorch/issues/38716, fixes https://github.com/pytorch/pytorch/issues/37234
This algorithm does the summation along a single axis with multiple "levels" of accumulator, each of which is designed to hold the sum of an order of magnitude more values than the previous.
e.g. if there are 2^16 elements, the first level will hold the sum of 2^4 elements, and so on in increasing powers of 2: 2^4, 2^8, 2^12 and finally 2^16.
This limits the differences in magnitude of the partial results being added together, and so we don't lose accuracy as the axis length increases.
WIP to write a vectorized version.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39516
Reviewed By: ezyang
Differential Revision: D22106251
Pulled By: ngimel
fbshipit-source-id: b56de4773292439dbda62b91f44ff37715850ae9
Summary:
BC-breaking NOTE:
In PyTorch 1.6 bool and integral fill values given to torch.full must set the dtype our out keyword arguments. In prior versions of PyTorch these fill values would return float tensors by default, but in PyTorch 1.7 they will return a bool or long tensor, respectively. The documentation for torch.full has been updated to reflect this.
PR NOTE:
This PR causes torch.full to throw a runtime error when it would have inferred a float dtype by being given a boolean or integer value. A versioned symbol for torch.full is added to preserve the behavior of already serialized Torchscript programs. Existing tests for this behavior being deprecated have been updated to reflect it now being unsupported, and a couple new tests have been added to validate the versioned symbol behavior. The documentation of torch.full has also been updated to reflect this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40364
Differential Revision: D22176640
Pulled By: mruberry
fbshipit-source-id: b20158ebbcb4f6bf269d05a688bcf4f6c853a965
Summary:
Slightly modified Adam, following the python implementation, and the `ProducesPyTorchValues` tests pass. I had a problem with another test though (see commit c1a6241676ab84fc531c1c3a10f964aa5704092e), it seems that optimizing for two steps with the same optimizer vs optimizing for two steps using freshly initialized objects will produce the same output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40009
Differential Revision: D22096053
Pulled By: glaringlee
fbshipit-source-id: a31a8f5488cb37c53752ddf15436efabdba67dc4
Summary:
Adds `torch.experimental.deterministic` flag to enforce deterministic algorithms across all of pytorch.
Adds `torch.experimental.deterministic_error_level` to allow users to choose between error/warning/silent if determinism for an operation is not available.
Adds `torch.experimental.alert_not_deterministic()` which should be called within operations that are not deterministic.
Offers both Python and ATen interfaces
Issue https://github.com/pytorch/pytorch/issues/15359
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38683
Differential Revision: D21998093
Pulled By: ezyang
fbshipit-source-id: 23aabbddd20f6199d846f97764ff24d728163737
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37681
By passing by value, we can std::move, and avoid unnecessarily copying
args that are part of any std::function/lambda state (e.g. in the jit
interpreter, there is a std::vector<> stack passed in the
InterpreterContinuation)
This makes the api also consistent with e.g. folly and best practices.
Added a minor at::launch() benchmark to test/cpp/, the difference is
mostly noticeable when copying the std::function<> internal args is
non-trivial.
Benchmarks pre/post (min over ~5 runs)
NoData: 5.81 us -> 5.63 us (-3.2%)
WithData(0): 6.67 us -> 5.88 us (-11.8%)
WithData(4): 6.98 us -> 6.51 us (-6.7%)
WithData(256): 9.44 us -> 7.89 (-16.5%)
ghstack-source-id: 103322321
Test Plan:
- perf: buck run mode/opt caffe2/test/cpp/api:parallel_benchmark pre/post
- correctness buck test mode/dev-nosan caffe2/test/...
Reviewed By: dzhulgakov
Differential Revision: D21355148
fbshipit-source-id: 3567e730845106f1991091e4a892d093e00571c3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37704
If input tensor can not be chunked, run `parallel_apply` on fewer devices
Modfy input tensor dimention in `DataParallelUsesAllAvailableCUDADevices_CUDA` to be chunkable by any number of available CUDA devices
Test Plan: Run `test/cpp/api/parallel` on machine with 6 GPUs
Differential Revision: D21365416
fbshipit-source-id: 60fdfed4a0e6256b2c966c2ea3e8d0bfb298d9a8
Summary:
Today in PyTorch, warnings triggered in C++ are printed to Python users like this:
`../aten/src/ATen/native/BinaryOps.cpp:81: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead.`
This may be unhelpful to Python users, who have complained it's difficult to relate these messages back to their programs. After this PR, warnings that go through the PyWarningHandler and allow it to add context print like this:
```
test/test_torch.py:16463: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead. (Triggered internally at ../aten/src/ATen/native/BinaryOps.cpp:81.)
cpu_result = getattr(cpu_tensor, op_str)(*cpu_args)
```
This relates the warning back to the user's program. The information about the cpp file and line number is preserved in the body of the warning message.
Some warnings, like those generated in the JIT, already account for a user's Python context, and so they specify that they should be printed verbatim and are unaffected by this change. Warnings originating in Python and warnings that go through c10's warning handler, which prints to cerr, are also unaffected.
A test is added to test_torch.py for this behavior. The test relies on uint8 indexing being deprecated and its warning originating from its current header file, which is an unfortunate dependency. We could implement a `torch.warn` function, instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36052
Differential Revision: D20887740
Pulled By: mruberry
fbshipit-source-id: d3515c6658a387acb7fccaf83f23dbb452f02847
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36984
Follow LOG(WARNING) format for c++ side warnings in order to play well with larger services, especially when using glog. I need to hook up into GLOG internals a bit in order to override FILE/LINE without having to change the whole thing to be macros, but it seems to be stable between glog versions.
Note, this also changes caffe2_log_level to warning by default - I think it's a much better default when compiling without glog (or maybe even have info).
With glog output, stderr capture doesn't work any more in tests. That's why we instead use c10-level warnings capture.
Test Plan:
Run unittest in both glog and non-glog build mode:
glog:
```
W0416 12:06:49.778215 3311666 exception_test.cpp:23] Warning: I'm a warning (function TestBody)
```
no-glog:
```
[W exception_test.cpp:23] Warning: I'm a warning (function TestBody)
```
Reviewed By: ilia-cher
Differential Revision: D21151351
fbshipit-source-id: fa926d9e480db5ff696990dad3d80f79ef79f24a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36745
As we hold a mutex for our custom C++ Node, when calling reentrant
backward from custom C++ function, we will cocurrently holding many
mutexes up to MAX_DEPTH. TSAN only allow 65 mutexes at once, otherwise
it will complain. This PR lower the limit according to TSAN.
TSAN Reference: https://github.com/google/sanitizers/issues/950
Test Plan: Imported from OSS
Differential Revision: D21072604
Pulled By: wanchaol
fbshipit-source-id: 99cd1acab41a203d834fa4947f4e6f0ffd2e70f2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36729
setenv not available on windows
Test Plan: CI green in ovrsource
Reviewed By: stepancheg
Differential Revision: D21067835
fbshipit-source-id: ddbc3285ef88f123dc6a200b661c48cfafc6bf00
Summary:
This supersedes https://github.com/pytorch/pytorch/pull/35698.
`abs` is a C-style function that takes only integral argument
`std::abs` is polymorphic and can be applied to both integral and floating point types
This PR also increases `kBatchSize` in `test_optimizer_xor` function in `test/cpp/api/optim.cpp` to fix `OptimTest.XORConvergence_LBFGS` failure under ASAN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35974
Test Plan: CI
Reviewed By: pbelevich
Differential Revision: D20853570
Pulled By: yf225
fbshipit-source-id: 6135588df2426c5b974e4e097b416955d1907bd4
Summary:
Ignore mixed upper-case/lower-case style for now
Fix space between function and its arguments violation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35574
Test Plan: CI
Differential Revision: D20712969
Pulled By: malfet
fbshipit-source-id: 0012d430aed916b4518599a0b535e82d15721f78
Summary:
1. Removed LossClosureOptimizer, and merged Optimizer into OptimizerBase (and renamed the merged class to Optimizer)
2. Merged the LBFGS-specific serialize test function and the generic test_serialize_optimizer function.
3. BC-compatibility serialization test for LBFGS
4. Removed mentions of parameters_ in optimizer.cpp, de-virtualize all functions
5. Made defaults_ optional argument in all optimizers except SGD
**TODO**: add BC-breaking notes for this PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34957
Test Plan: Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D20678162
Pulled By: yf225
fbshipit-source-id: 74e062e42d86dc118f0fbaddd794e438b2eaf35a
Summary:
1. Removed LossClosureOptimizer, and merged Optimizer into OptimizerBase (and renamed the merged class to Optimizer)
2. Merged the LBFGS-specific serialize test function and the generic test_serialize_optimizer function.
3. BC-compatibility serialization test for LBFGS
4. Removed mentions of parameters_ in optimizer.cpp, de-virtualize all functions
5. Made defaults_ optional argument in all optimizers except SGD
**TODO**: add BC-breaking notes for this PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34957
Differential Revision: D20645945
Pulled By: yf225
fbshipit-source-id: 383588065bf1859b38f0ad0a25d93d41e153c96e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35163
This PR is BC-breaking in the following way:
Renaming:
- `torch::nn::functional::MultiLabelMarginLossFuncOptions` -> `torch::nn::functional::MultilabelMarginLossFuncOptions`
- `torch::nn::functional::MultiLabelSoftMarginLossFuncOptions` -> `torch::nn::functional::MultilabelSoftMarginLossFuncOptions`
Reason for renaming: to be consistent with the corresponding functional name after camel case to snake case conversion (e.g. the `multilabel_margin_loss` functional should use `MultilabelMarginLossFuncOptions` as options)
Test Plan: Imported from OSS
Differential Revision: D20582598
Pulled By: yf225
fbshipit-source-id: 0f5bdb8249d901b310875a14320449a2fdfa8ecd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35025
This PR fixes `F::interpolate` and `torch::nn::Upsample` implementation to match the Python API implementation.
**This PR is BC-breaking in the following way:**
There are changes to `UpsampleOptions` and `InterpolateFuncOptions`:
- `size` is changed from `std::vector<int64_t>` to `c10::optional<std::vector<int64_t>>`. If you want to pass a list of `int64_t` to this argument, you must pass it as `std::vector<int64_t>`.
- `scale_factor` is changed from `std::vector<double>` to `c10::optional<std::vector<double>>`. If you want to pass a list of `double` to this argument, you must pass it as `std::vector<double>`.
**TODO**: cherry-pick this PR into v1.5 release branch.
Test Plan: Imported from OSS
Differential Revision: D20559892
Pulled By: yf225
fbshipit-source-id: ac18609e351a9f2931eaeced8966b9491b2995f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35022
This PR fixes `AdaptiveAvgPool{2,3}d` and `AdaptiveMaxPool{2,3}d` implementation to match the Python API implementation. Particularly, `output_size` is changed to accept `c10::nullopt` in its elements, matching the Python API behavior.
**TODO**: cherry-pick this PR into v1.5 release branch.
Test Plan: Imported from OSS
Differential Revision: D20559890
Pulled By: yf225
fbshipit-source-id: ccddbd278dd39165cf1dda11fc0e49387c76dbef
Summary:
1. Removed LossClosureOptimizer, and merged Optimizer into OptimizerBase (and renamed the merged class to Optimizer)
2. Merged the LBFGS-specific serialize test function and the generic test_serialize_optimizer function.
3. BC-compatibility serialization test for LBFGS
4. Removed mentions of parameters_ in optimizer.cpp, de-virtualize all functions
5. Made defaults_ optional argument in all optimizers except SGD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34957
Test Plan: Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D20518647
Pulled By: anjali411
fbshipit-source-id: 4760d1d29df1784e2d01e2a476d2a08e9df4ea1c
Summary:
Follow-ups after this PR:
* Remove `LossClosureOptimizer`, and merge `Optimizer` into `OptimizerBase` (and rename the merged class to Optimizer)
* Merge the LBFGS-specific serialize test function and the generic `test_serialize_optimizer` function, possibly by passing a bool `has_only_global_state` flag into the `test_serialize_optimizer` function to denote whether `size()` should be equal to 1 or 2?
* https://github.com/pytorch/pytorch/pull/34564#discussion_r393780303
* It seems that we don't have the equivalent `XORConvergence_LBFGS` test like the other optimizers, and it would be good to add one
* Remove mentions of `parameters_` in optimizer.cpp, de-virtualize all functions, and remove the `OptimizerBase(std::vector<Tensor> parameters)` constructor from `OptimizerBase`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34564
Test Plan: Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D20495701
Pulled By: anjali411
fbshipit-source-id: 6d35286d2decb6f7dff93d9d3e57515770666622
Summary:
This PR refactors RNN / GRU / LSTM layers in C++ API to exactly match the implementation in Python API.
**BC-breaking changes:**
- Instead of returning `RNNOutput`, RNN / GRU forward method now returns `std::tuple<Tensor, Tensor>`, and LSTM forward method now returns `std::tuple<Tensor, std::tuple<Tensor, Tensor>>`, matching Python API.
- RNN / LSTM / GRU forward method now accepts the same inputs (input tensor and optionally hidden state), matching Python API.
- RNN / LSTM / GRU layers now have `forward_with_packed_input` method which accepts `PackedSequence` as input and optionally hidden state, matching the `forward(PackedSequence, ...)` variant in Python API.
- RNN / LSTM / GRU layers no longer have these fields: `w_ih` / `w_hh` / `b_ih` / `b_hh`. Instead, to access the weights and biases of the gates, users should do e.g. `rnn->named_parameters()["weight_ih_l0"]`, which mirrors the Python API `rnn.weight_ih_l0`.
- In `RNNOptions`
- `tanh()` / `relu()` / `activation` are removed. Instead, `nonlinearity` is added which takes either `torch::kTanh` or `torch::kReLU`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `LSTMOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `GRUOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
The majority of the changes in this PR focused on refactoring the implementations in `torch/csrc/api/src/nn/modules/rnn.cpp` to match the Python API. RNN tests are then changed to reflected the revised API design.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34322
Differential Revision: D20458302
Pulled By: yf225
fbshipit-source-id: ffff2ae1ddb1c742c966956f6ad4d7fba03dc54d
Summary:
This PR refactors RNN / GRU / LSTM layers in C++ API to exactly match the implementation in Python API.
**BC-breaking changes:**
- Instead of returning `RNNOutput`, RNN / GRU forward method now returns `std::tuple<Tensor, Tensor>`, and LSTM forward method now returns `std::tuple<Tensor, std::tuple<Tensor, Tensor>>`, matching Python API.
- RNN / LSTM / GRU forward method now accepts the same inputs (input tensor and optionally hidden state), matching Python API.
- RNN / LSTM / GRU now has `forward_with_packed_input` method which accepts `PackedSequence` as input and optionally hidden state, matching the `forward(PackedSequence, ...)` variant in Python API.
- In `RNNOptions`
- `tanh()` / `relu()` / `activation` are removed. Instead, `nonlinearity` is added which takes either `torch::kTanh` or `torch::kReLU`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `LSTMOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `GRUOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
The majority of the changes in this PR focused on refactoring the implementations in `torch/csrc/api/src/nn/modules/rnn.cpp` to match the Python API. RNN tests are then changed to reflected the revised API design.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34322
Differential Revision: D20311699
Pulled By: yf225
fbshipit-source-id: e2b60fc7bac64367a8434647d74c08568a7b28f7
Summary:
This PR adds `RNNCell` / `LSTMCell` / `GRUCell` layers to the C++ frontend, with implementations exactly matching the Python API equivalent.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34400
Differential Revision: D20316859
Pulled By: yf225
fbshipit-source-id: bb7cee092622334043c0d0fd0fcb4e75e707699c