Commit Graph

328 Commits

Author SHA1 Message Date
Richard Zou
3a107bc9be [functorch] fix vmapvjpvjp test for prelu (#84939)
Turns out this is just a composite compliance issue. Branching on if
something requires grad or not can lead to incorrect gradients if we
have a BatchedTensor wrapping a tensor that requires grad.

Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84939
Approved by: https://github.com/soulitzer
2022-09-15 00:36:30 +00:00
Mikayla Gawarecki
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00
Ivan Yashchuk
01c54ad6de Remove deprecated torch.eig (#70982)
The time has come to remove deprecated linear algebra related functions. This PR removes `torch.eig`.

cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70982
Approved by: https://github.com/Lezcano, https://github.com/malfet
2022-09-09 21:31:57 +00:00
nikitaved
3eb16509c7 optimize householder product backward to be more memory-efficient (#84627)
A follow-up on discussions in https://github.com/pytorch/pytorch/pull/84180.
Makes backward more memory efficient with the lesser number of kernel calls.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84627
Approved by: https://github.com/kshitij12345, https://github.com/zou3519
2022-09-07 15:29:47 +00:00
kshitij12345
07d398fb26 [composite compliance] linalg_householder_product (#84180)
Ref: #69991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84180
Approved by: https://github.com/zou3519
2022-09-07 09:33:37 +00:00
kshitij12345
65ea3d0621 [composite compliance] cov, corrcoef (#82954)
Ref: #69991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82954
Approved by: https://github.com/zou3519
2022-08-26 15:14:37 +00:00
Mario Lezcano
3e6e0a1d10 Support a stable double backward on linalg.det for real inputs (#80217)
The complex case still fails. I do not know why.

Fixes https://github.com/pytorch/pytorch/issues/62327
Fixes https://github.com/pytorch/pytorch/issues/53364
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80217
Approved by: https://github.com/nikitaved, https://github.com/albanD, https://github.com/malfet
2022-08-24 15:18:56 +00:00
Mario Lezcano
aad89bb771 Make the derivative of masked_fill more efficient (#83515)
There's no need to add all the zeros if we extract all the non-zero
elements.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83515
Approved by: https://github.com/albanD, https://github.com/soulitzer
2022-08-18 13:00:12 +00:00
Kurt Mohler
be5b3df6cc Update std_mean/var_mean/nanmean/nansum signatures with int[1]? dim (#82912)
### Description
Change the type of the `dim` arg for `std_mean/var_mean/nanmean/nansum` to `int[1]?` in `native_functions.yaml`

### Issue
Part of #29137

### Testing

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82912
Approved by: https://github.com/albanD
2022-08-10 16:58:26 +00:00
kshitij12345
10e7a25488 [composite compliance] eig_backward (#82957)
Ref #69991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82957
Approved by: https://github.com/zou3519
2022-08-08 15:18:48 +00:00
Kurt Mohler
2bfae07a79 Enable dim=None for torch.mean (#81286)
Part of #79525

This will require coordination with XLA before merging, just like #79881
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81286
Approved by: https://github.com/albanD
2022-07-28 22:34:56 +00:00
Nikolay Korovaiko
d2c47d559c Revert "Revert "Enabling SymInt in autograd; take 3 (#81145)"" ; make sure is_intlist checks for symintnodes (#82189)
### Description
<!-- What did you change and why was it needed? -->

### Issue
<!-- Link to Issue ticket or RFP -->

### Testing
<!-- How did you test your change? -->

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82189
Approved by: https://github.com/ezyang
2022-07-26 20:47:11 +00:00
lezcano
11fe277b62 [PrimTorch] Add reference for torch.norm (#81765)
This ref does more things than `torch.norm`, and it fixes a few bugs
that `torch.norm` has. This implementation and the `torch.norm`
implementation come to terms in the next PR of this stack

We put this PR before, as otherwise `test_decomp.py` was failing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81765
Approved by: https://github.com/ngimel
2022-07-25 19:57:21 +00:00
Kshiteej K
db0e121b46 [composite compliance] put, take (#81094)
Reference: #69991

This PR makes `put` CompositeExplicit as it is implemented in terms of `put_` (for which we can't handle Composite Compliance at the implementation level).

Ref (put implementation)
478081c698/aten/src/ATen/native/TensorAdvancedIndexing.cpp (L619-L621)

Also, we update the `take` gradient formula to handle Tensor Subclass .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81094
Approved by: https://github.com/zou3519
2022-07-25 15:05:16 +00:00
kshitij12345
5880a66758 [composite compliance] matrix_exp (#81225)
Ref: #69991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81225
Approved by: https://github.com/zou3519
2022-07-25 11:11:29 +00:00
PyTorch MergeBot
c078476eb0 Revert "Enabling SymInt in autograd; take 3 (#81145)"
This reverts commit 032facd6e6.

Reverted https://github.com/pytorch/pytorch/pull/81145 on behalf of https://github.com/jeanschmidt due to breaking internal builds
2022-07-22 11:15:20 +00:00
Nikolay Korovaiko
032facd6e6 Enabling SymInt in autograd; take 3 (#81145)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81145
Approved by: https://github.com/ezyang
2022-07-22 00:14:50 +00:00
Edward Z. Yang
84c8a9f88e Use slow but safe formula for prod_backward (#81617)
prod performs a sync to test for zeros as the formula is substantially
simpler if there are no zeros, but this doesn't work for meta tensors.
The double backwards formula works great in all cases though!

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81617
Approved by: https://github.com/soulitzer
2022-07-18 18:45:32 +00:00
PyTorch MergeBot
4963adcc8d Revert "[composite compliance] matrix_exp (#81225)"
This reverts commit 367c695237.

Reverted https://github.com/pytorch/pytorch/pull/81225 on behalf of https://github.com/clee2000 due to broke functorch https://github.com/pytorch/pytorch/runs/7345901504?check_suite_focus=true
2022-07-14 19:53:51 +00:00
kshitij12345
367c695237 [composite compliance] matrix_exp (#81225)
Ref: #69991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81225
Approved by: https://github.com/zou3519
2022-07-14 18:19:11 +00:00
lezcano
b5b9db9f84 Make kl_div a composite function. (#80334)
Benchmarks: https://github.com/pytorch/pytorch/pull/80334#issuecomment-1167229285

Fixes https://github.com/pytorch/pytorch/issues/80158
Fixes https://github.com/pytorch/pytorch/issues/78867
Fixes https://github.com/pytorch/pytorch/issues/69230

Supersedes https://github.com/pytorch/pytorch/pull/79007
Supersedes https://github.com/pytorch/pytorch/pull/69212
Supersedes https://github.com/pytorch/pytorch/pull/19659
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80334
Approved by: https://github.com/ezyang
2022-07-13 20:07:36 +00:00
Kurt Mohler
23bdb570cf Reland: Enable dim=None for torch.sum (#79881)
Part of #29137

Reland of #75845
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79881
Approved by: https://github.com/albanD, https://github.com/kulinseth
2022-07-09 00:54:42 +00:00
PyTorch MergeBot
f2c8557521 Revert "Make kl_div a composite function. (#80334)"
This reverts commit 828c787ea9.

Reverted https://github.com/pytorch/pytorch/pull/80334 on behalf of https://github.com/ezyang due to doesn't work with xla
2022-07-06 17:51:06 +00:00
lezcano
828c787ea9 Make kl_div a composite function. (#80334)
Benchmarks: https://github.com/pytorch/pytorch/pull/80334#issuecomment-1167229285

Fixes https://github.com/pytorch/pytorch/issues/80158
Fixes https://github.com/pytorch/pytorch/issues/78867
Fixes https://github.com/pytorch/pytorch/issues/69230

Supersedes https://github.com/pytorch/pytorch/pull/79007
Supersedes https://github.com/pytorch/pytorch/pull/69212
Supersedes https://github.com/pytorch/pytorch/pull/19659
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80334
Approved by: https://github.com/ezyang
2022-07-04 19:33:43 +00:00
lezcano
37a5819665 Make slogdet, linalg.sloget and logdet support metatensors (#79742)
This PR also adds complex support for logdet, and makes all these
functions support out= and be composite depending on one function. We
also extend the support of `logdet` to complex numbers and improve the
docs of all these functions.

We also use `linalg_lu_factor_ex` in these functions, so we remove the
synchronisation present before.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79742
Approved by: https://github.com/IvanYashchuk, https://github.com/albanD
2022-07-01 16:09:21 +00:00
Hao Zhuang
0ca9888000 Correct the math of repeat_backward in the function comment (#80286)
Correct the math of repeat_backward in the function comment.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80286
Approved by: https://github.com/albanD
2022-06-28 16:22:46 +00:00
lezcano
42a2359612 Add forward AD for linalg.det and simplify its backward (#79487)
This PR is in preparation for implementing `logdet` and `slogdet` as
structured kernels + implementing them with more efficient derivatives

We implement forward AD for det. We also simplify the implementation of
the backward, and leave a note on how to implement it properly for
singular matrices. We leave thad for future work.

Note (by looking at the OpInfo) that the current implementation passes
the same tests as the one before. We skip the forward-over-backward in
the singular case, as that one was not working in the gradgrad case
either.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79487
Approved by: https://github.com/nikitaved, https://github.com/albanD
2022-06-24 14:15:17 +00:00
lezcano
44ff6be35a Fix backward of binary_cross_entropy_with_logits
The previous PR in this stack uncovered an error in the forward over
backward for this function.

In this PR, we fix this error and we also fix the gradgrad
implementation (and make it more stable and faster using `logsigmoid`).
We also move the double backward for this function to `FunctoinsManual`
as there's no reason for it to be in `native_functions`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/80083

Approved by: https://github.com/zou3519
2022-06-23 01:31:08 +00:00
lezcano
f54e7b4ad6 More forward AD formulas
This PR:
- Corrects the forward AD formula of `torch.sgn`.
  - The reason why we can't use `auto_element_wise` for this operations is rather subtle. I left a comment.
  - This, in turn, fixes a problem we had in forward-over-backward for `linalg.svd` and other spectral decompositions (and `norm`, `linalg.norm`, `linalg.matrix_norm`) that were using `torch.abs` (whose derivative is given by `torch.sgn`.
- Implement the formula for a number of missing operations `nansum`, `amax`, `amin`...
- Simplified a few formulas, most notably the forward AD for `div` and the derivative of `norm`, `linalg.norm` and `vector_norm` for `ord=+-inf`.
- Correct the formula for `mean`, `std_mean`, `var_mean` when `dim` is provided and equal to `()` (or `None`)
- A few minor improvements to `sum_backward`, `unsqueeze_multiple` and formulas depending on them
- Fix the derivatives of `std_mean` and `std_var` (complex support,
ASAN, forward AD...)

Fixes: https://github.com/pytorch/pytorch/issues/67539

Pull Request resolved: https://github.com/pytorch/pytorch/pull/80082

Approved by: https://github.com/zou3519
2022-06-23 01:31:08 +00:00
PyTorch MergeBot
e3d0a3ca88 Revert "More forward AD formulas"
This reverts commit 6b20ef6b91.

Reverted https://github.com/pytorch/pytorch/pull/77975 on behalf of https://github.com/janeyx99 due to I think this is the real culprit of the broken tests in 28a7ee8cec for the trunk-only slow test job
2022-06-22 19:30:02 +00:00
PyTorch MergeBot
942c371bbc Revert "Fix backward of binary_cross_entropy_with_logits"
This reverts commit 28a7ee8cec.

Reverted https://github.com/pytorch/pytorch/pull/79381 on behalf of https://github.com/janeyx99 due to Sorry, 28a7ee8cec this PR breaks trunk-only slow test job
2022-06-22 17:41:09 +00:00
lezcano
28a7ee8cec Fix backward of binary_cross_entropy_with_logits
The previous PR in this stack uncovered an error in the forward over
backward for this function.

In this PR, we fix this error and we also fix the gradgrad
implementation (and make it more stable and faster using `logsigmoid`).
We also move the double backward for this function to `FunctoinsManual`
as there's no reason for it to be in `native_functions`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79381

Approved by: https://github.com/soulitzer
2022-06-22 14:28:56 +00:00
lezcano
6b20ef6b91 More forward AD formulas
This PR:
- Corrects the forward AD formula of `torch.sgn`.
  - The reason why we can't use `auto_element_wise` for this operations is rather subtle. I left a comment.
  - This, in turn, fixes a problem we had in forward-over-backward for `linalg.svd` and other spectral decompositions (and `norm`, `linalg.norm`, `linalg.matrix_norm`) that were using `torch.abs` (whose derivative is given by `torch.sgn`.
- Implement the formula for a number of missing operations `nansum`, `amax`, `amin`...
- Simplified a few formulas, most notably the forward AD for `div` and the derivative of `norm`, `linalg.norm` and `vector_norm` for `ord=+-inf`.
- Correct the formula for `mean`, `std_mean`, `var_mean` when `dim` is provided and equal to `()` (or `None`)
- A few minor improvements to `sum_backward`, `unsqueeze_multiple` and formulas depending on them
- Fix the derivatives of `std_mean` and `std_var` (complex support,
ASAN, forward AD...)

Fixes: https://github.com/pytorch/pytorch/issues/67539

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77975

Approved by: https://github.com/soulitzer
2022-06-22 14:28:56 +00:00
Driss Guessous
a098937c20 Add factory function derivatives (#79872)
Adding derivatives for factory functions, this issue is used for tracking: #79044

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79872
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2022-06-21 00:53:11 +00:00
lezcano
16f30b494c Make l1_loss composite
Fixing the forward AD for `sgn` in the next PR of this stack uncovered a
number of issues with the derivatives of `l1_loss`. Upon inspection,
`l1_loss` was just implemented as a composite function, but it was not
differentiable. This PR makes it a fully differentiable function.

As a side note, `l1_loss_out` was incorrect in a number of ways. Even
more, it is not exposed to the public as `F.l1_loss` does not accept an
`out=` parameter. As such it is not even tested. I wonder how useful is
to have `out=` variants for loss functions if we don't expose them at
all. Even more, I wonder how useful is to have `_out` variants  for loss
functions, given that their most normal use case is to return just a
real number cc jbschlosser

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79804

Approved by: https://github.com/zou3519, https://github.com/malfet
2022-06-20 19:10:54 +00:00
PyTorch MergeBot
d4a9438786 Revert "Make l1_loss composite"
This reverts commit 61a5c779bf.

Reverted https://github.com/pytorch/pytorch/pull/78257 on behalf of https://github.com/malfet due to This breaks executorch
2022-06-17 18:14:21 +00:00
Kshiteej K
04b98df87a [fix] composite compliance: eig, eigh, symeig (#79698)
Ref: https://github.com/pytorch/pytorch/issues/69991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79698
Approved by: https://github.com/Lezcano, https://github.com/albanD
2022-06-17 14:13:04 +00:00
PyTorch MergeBot
ee6ebfc06b Revert "Enable dim=None for torch.sum (#75845)"
This reverts commit e79a51f7db.

Reverted https://github.com/pytorch/pytorch/pull/75845 on behalf of https://github.com/malfet due to Breaks MacOS builds, see e79a51f7db
2022-06-16 22:01:41 +00:00
Kurt Mohler
e79a51f7db Enable dim=None for torch.sum (#75845)
Part of #29137

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75845
Approved by: https://github.com/ezyang
2022-06-16 20:17:07 +00:00
lezcano
61a5c779bf Make l1_loss composite
Fixing the forward AD for `sgn` in the next PR of this stack uncovered a
number of issues with the derivatives of `l1_loss`. Upon inspection,
`l1_loss` was just implemented as a composite function, but it was not
differentiable. This PR makes it a fully differentiable function.

As a side note, `l1_loss_out` was incorrect in a number of ways. Even
more, it is not exposed to the public as `F.l1_loss` does not accept an
`out=` parameter. As such it is not even tested. I wonder how useful is
to have `out=` variants for loss functions if we don't expose them at
all. Even more, I wonder how useful is to have `_out` variants  for loss
functions, given that their most normal use case is to return just a
real number cc jbschlosser

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78257

Approved by: https://github.com/jbschlosser
2022-06-16 00:03:22 +00:00
Michael Suo
30fb2c4aba [lint] autoformat test/cpp and torch/csrc
Let's have some fun.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828

Approved by: https://github.com/ezyang
2022-06-11 21:11:16 +00:00
lezcano
54949a5abc Simplify and optimize linalg.solve
This PR heavily simplifies the code of `linalg.solve`. At the same time,
this implementation saves quite a few copies of the input data in some
cases (e.g. A is contiguous)

We also implement it in such a way that the derivative goes from
computing two LU decompositions and two LU solves to no LU
decompositions and one LU solves. It also avoids a number of unnecessary
copies the derivative was unnecessarily performing (at least the copy of
two matrices).

On top of this, we add a `left` kw-only arg that allows the user to
solve `XA = B` rather concisely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74046

Approved by: https://github.com/nikitaved, https://github.com/IvanYashchuk, https://github.com/mruberry
2022-06-11 04:06:40 +00:00
PyTorch MergeBot
3556457dd2 Revert "kl_div: fix for grads wrt target, double backward, forward-over-reverse AD support. (#79007)"
This reverts commit 72ad222cff.

Reverted https://github.com/pytorch/pytorch/pull/79007 on behalf of https://github.com/janeyx99 due to Broke test_fn_fwgrad_bwgrad_nn_functional_kl_div_cpu_float64 on trunk https://hud.pytorch.org/minihud?name_filter=pull%20/%20linux-xenial-py3.7-clang7-asan%20/%20test%20(default,%202,%205,%20linux.2xlarge)
2022-06-09 13:07:03 +00:00
Nikita Vedeneev
72ad222cff kl_div: fix for grads wrt target, double backward, forward-over-reverse AD support. (#79007)
Fixes https://github.com/pytorch/pytorch/issues/78867,
fixes https://github.com/pytorch/pytorch/issues/65466.
Adds forward-over-reverse AD support.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79007
Approved by: https://github.com/soulitzer, https://github.com/jbschlosser
2022-06-09 09:06:52 +00:00
lezcano
c7d6cec078 Add linalg.lu_solve
This PR adds `linalg.lu_solve`. While doing so, I found a bug in MAGMA
when calling the batched MAGMA backend with trans=True. We work around
that by solving the system solving two triangular systems.

We also update the heuristics for this function, as they were fairly
updated. We found that cuSolver is king, so luckily we do not need to
rely on the buggy backend from magma for this function.

We added tests testing this function left and right. We also added tests
for the different backends. We also activated the tests for AMD, as
those should work as well.

Fixes https://github.com/pytorch/pytorch/issues/61657

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77634

Approved by: https://github.com/malfet
2022-06-07 22:28:28 +00:00
Nikita Vedeneev
a4509f5b72 More forward-over-reverse implementations. (#78740)
Umbrella issue: https://github.com/pytorch/pytorch/issues/75432.

This one implements forward-over-reverse for:

* mse_loss
* l1_loss
* smooth_l1_loss
* softplus
* hardswish (also adds double backward support)
* prelu

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78740
Approved by: https://github.com/soulitzer
2022-06-03 15:44:06 +00:00
Brian Hirsh
5cc258ec9e make block_diag composite compliant
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77716

Approved by: https://github.com/zou3519
2022-05-26 16:15:42 +00:00
Nikita Vedeneev
3924d56fae BCE loss: forward-over-reverse AD support (#77852)
Umbrella issue: https://github.com/pytorch/pytorch/issues/75432

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77852
Approved by: https://github.com/soulitzer
2022-05-26 14:36:52 +00:00
Brian Hirsh
07e4533403 reland of as_strided support for functionalization; introduce as_strided_scatter
This reverts commit a95f1edd85.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78199

Approved by: https://github.com/ezyang
2022-05-24 22:40:44 +00:00
PyTorch MergeBot
a95f1edd85 Revert "as_strided support for functionalization; introduce as_strided_scatter"
This reverts commit 3a921f2d26.

Reverted https://github.com/pytorch/pytorch/pull/77128 on behalf of https://github.com/suo due to This broke rocm tests on master 3a921f2d26. rocm tests are no longer run on PRs, you should add a `ciflow/trunk` label if you want to run them
2022-05-24 20:19:12 +00:00
Brian Hirsh
3a921f2d26 as_strided support for functionalization; introduce as_strided_scatter
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77128

Approved by: https://github.com/ezyang
2022-05-24 18:20:31 +00:00
lezcano
0c8c39fa71 Fix derivatives of norm(p=inf)
Following up on https://github.com/pytorch/pytorch/pull/51099#discussion_r583323915, we fix these derivatives, as they were incorrect until now.

As described in the note, the better solution would be to use vectorised operations on the preprocessing operation when reducing on CPU. It's not clear how difficult that may be.

Fixes https://github.com/pytorch/pytorch/issues/67517

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78105

Approved by: https://github.com/ngimel
2022-05-24 17:16:16 +00:00
lezcano
e0295f55b5 Fix derivatives for linalg.vector_norm(..., dtype=)
As per title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76551

Approved by: https://github.com/albanD
2022-05-19 21:17:18 +00:00
PyTorch MergeBot
7a4e3f329f Revert "Fix derivatives for linalg.vector_norm(..., dtype=)"
This reverts commit 13d8fb93bb.

Reverted https://github.com/pytorch/pytorch/pull/76551 on behalf of https://github.com/seemethere due to Reverting the entire stack, errors originated from
* https://github.com/pytorch/pytorch/pull/76547

Failed internal builds due to ([Link for Meta Employees](https://www.internalfb.com/diff/D36494019?selected_signal=c2FuZGNhc3RsZV93b3JrZmxvd19ydW46MTgwMTQzOTg1MTUzNTQ3NzQ%3D&selected_signal_verification_phase=1&dst_version_fbid=1211273672948052)):
```
aten/src/ATen/native/LinearAlgebra.cpp:2496:9: error: unused type alias 'Int' [-Werror,-Wunused-local-typedef]
  using Int = IntArrayRef::value_type;
        ^
1 error generated.
Command failed with exit code 1.
```
2022-05-19 21:04:23 +00:00
Nikita Vedeneev
7945fa6ce2 BCE loss: forward ad support (#77755)
As per title + BCE with logits gets a simpler implementation.
Relevant for https://github.com/pytorch/pytorch/issues/71117

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77755
Approved by: https://github.com/soulitzer
2022-05-19 13:13:58 +00:00
lezcano
13d8fb93bb Fix derivatives for linalg.vector_norm(..., dtype=)
As per title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76551

Approved by: https://github.com/mruberry
2022-05-18 11:46:50 +00:00
Nikita Vedeneev
a760dc2687 binary_cross_entropy: double backwart wrt target (#77416)
As per title. An effort to make `binary_cross_entropy` all around differentiable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77416
Approved by: https://github.com/soulitzer
2022-05-18 10:29:27 +00:00
lezcano
369d9f4137 A few forward AD formulas
It includes all-time favourites like:
- `put`
- `nn.functional.embedding`
- `prelu`
- `nn.functional.bilinear`
- `nn.functional.rrelu`
- `nn.functional.logsigmoid`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77421

Approved by: https://github.com/soulitzer
2022-05-17 15:55:51 +00:00
Mikayla Gawarecki
7ba4e124e6 Bugfix gradient formula for index_reduce('prod') + separate out sample_inputs for index_reduce
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77382

Approved by: https://github.com/cpuhrsch
2022-05-16 18:43:57 +00:00
Mikayla Gawarecki
841c65f499 Unprivate _index_reduce and add documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76997

Approved by: https://github.com/cpuhrsch
2022-05-13 19:48:38 +00:00
jiayisun
97deda4f28 add BFloat16 support for logcumsumexp on CPU (#72694)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72694
Approved by: https://github.com/VitalyFedyunin, https://github.com/frank-wei
2022-05-12 17:10:28 +00:00
Ivan Yashchuk
545d90f032 Sparse CSR: enable autograd for torch.sparse.addmm and torch.sparse.mm
This PR updates the derivative rule for `torch.sparse.addmm` to be
working with CSR sparse matrix. Notably `torch.sparse.sampled_addmm` is
used in the backward function.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76591

Approved by: https://github.com/cpuhrsch
2022-05-11 18:57:40 +00:00
PyTorch MergeBot
f94abd59f7 Revert "Sparse CSR: enable autograd for torch.sparse.addmm and torch.sparse.mm"
This reverts commit 721a8ca697.

Reverted https://github.com/pytorch/pytorch/pull/76591 on behalf of https://github.com/janeyx99
2022-05-10 13:21:46 +00:00
Ivan Yashchuk
721a8ca697 Sparse CSR: enable autograd for torch.sparse.addmm and torch.sparse.mm
This PR updates the derivative rule for `torch.sparse.addmm` to be
working with CSR sparse matrix. Notably `torch.sparse.sampled_addmm` is
used in the backward function.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76591

Approved by: https://github.com/cpuhrsch
2022-05-10 08:44:55 +00:00
PyTorch MergeBot
4ebc4890dd Revert "Add linalg.lu_solve"
This reverts commit fc5b4a5a33.

Reverted https://github.com/pytorch/pytorch/pull/72935 on behalf of https://github.com/malfet
2022-05-09 19:12:30 +00:00
Mikayla Gawarecki
465e0ae266 Bugfix scatter_reduce backward formulas
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76523

Approved by: https://github.com/albanD
2022-05-05 20:22:39 +00:00
lezcano
fc5b4a5a33 Add linalg.lu_solve
This PR adds `linalg.lu_solve`. While doing so, I found a bug in MAGMA
when calling the batched MAGMA backend with trans=True. We work around
that by solving the system solving two triangular systems.

We also update the heuristics for this function, as they were fairly
updated. We found that cuSolver is king, so luckily we do not need to
rely on the buggy backend from magma for this function.

We added tests testing this function left and right. We also added tests
for the different backends. We also activated the tests for AMD, as
those should work as well.

Fixes https://github.com/pytorch/pytorch/issues/61657

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72935

Approved by: https://github.com/IvanYashchuk, https://github.com/mruberry
2022-05-05 19:02:13 +00:00
Nikita Vedeneev
33fabe9a2e functional.max_unpool: OpInfo tests + simpler backward + forward ad + fwad over backward ad
Resolves https://github.com/pytorch/pytorch/issues/67657, https://github.com/pytorch/pytorch/issues/67658, https://github.com/pytorch/pytorch/issues/67660.

These are not necessarily bugs because we cannot produce arbitrary samples coming from `max_pool` to the gradcheck's eternal satisfaction.

This PR also replaces low-level complicated backward kernels with much simpler high-level and well-tested counterparts. The replacement is also faster (before: parallel for loop, after: memory layout optimized TensorIterator's parallelization coming from `gather`).

cc @albanD @mruberry @jbschlosser @walterddr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68625
Approved by: https://github.com/albanD
2022-05-05 10:13:51 +00:00
lezcano
7cb7cd5802 Add linalg.lu
This PR modifies `lu_unpack` by:
- Using less memory when unpacking `L` and `U`
- Fuse the subtraction by `-1` with `unpack_pivots_stub`
- Define tensors of the correct types to avoid copies
- Port `lu_unpack` to be a strucutred kernel so that its `_out` version
does not incur on extra copies

Then we implement `linalg.lu` as a structured kernel, as we want to
compute its derivative manually. We do so because composing the
derivatives of `torch.lu_factor` and `torch.lu_unpack` would be less efficient.

This new function and `lu_unpack` comes with all the things it can come:
forward and backward ad, decent docs, correctness tests, OpInfo, complex support,
support for metatensors and support for vmap and vmap over the gradients.

I really hope we don't continue adding more features.

This PR also avoids saving some of the tensors that were previously
saved unnecessarily for the backward in `lu_factor_ex_backward` and
`lu_backward` and does some other general improvements here and there
to the forward and backward AD formulae of other related functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67833

Approved by: https://github.com/IvanYashchuk, https://github.com/nikitaved, https://github.com/mruberry
2022-05-05 09:17:05 +00:00
lezcano
1a4eea57be Improve derivative of QR decomposition
We derive and implement a more concise rule for the forward and backward
derivatives of the QR decomposition. While doing this we:
- Fix the composite compliance of `linalg.qr` and we make it support batches
- Improve the performance and simplify the implementation of both foward and backward
- Avoid saving the input matrix for the backward computation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76115

Approved by: https://github.com/nikitaved, https://github.com/albanD
2022-05-05 09:14:57 +00:00
Richard Zou
71ae190b87 [composite compliance] Fix a bunch of fft backwards
Replaced `at::zeros(..., grad.options()).slice().copy_(grad))`
with `grad.new_zeros(..., grad.options()).slice().copy_(grad))`

Test Plan:
- run tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76573

Approved by: https://github.com/ngimel, https://github.com/albanD
2022-05-03 00:07:30 +00:00
Mikayla Gawarecki
676a4a3969 Prototype _index_reduce (CPU-only)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75981

Approved by: https://github.com/cpuhrsch
2022-04-27 23:01:00 +00:00
Richard Zou
9cb2871f31 Fix forward-mode AD formula for binary_cross_entropy_with_logits
The problem was that `grad_input` and `grad_target` may be ZeroTensors,
which are immutable. This PR changes it so that operations on grad_input
and grad_target in `binary_cross_entropy_with_logits_jvp` are no longer
in-place.

Test Plan:
- run existing tests

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76322
Approved by: https://github.com/soulitzer
2022-04-25 22:30:57 +00:00
lezcano
441aea4127 Update Choesky's forward and backward derivative
This PR:
- Derives formally a new rule for Cholesky (write-up to come)
- Implements it without using in-place operations in the forward or backward.
- Does not instantiate inverses explicitly, but rather it solves two triangular systems of equations (2 triang vs 1 triang and 2 matmuls should be comparable, but the first one should be more stable).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76032

Approved by: https://github.com/nikitaved, https://github.com/albanD
2022-04-22 00:45:38 +00:00
Nikita Shulga
f6c275f55d Remove -Wno-unused-variable from utils.cmake (take 2) (#75538)
Summary:
[Comment](https://github.com/pytorch/pytorch/pull/62445/files#r680132022) claims, it got added for consistency with  top level CMakeLists.txt, but `-Wno-unused-variable` is not mentioned there.

Modify violations in 50+ files that were added in the interim by either removing unused variables, or decorating the code with `C10_UNUSED` if local variable is likely used to extend object lifetime until the end of the block.

Caused preventable revert in https://github.com/pytorch/pytorch/pull/72633#issuecomment-1092300787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75538

Reviewed By: anjali411

Differential Revision: D35747333

Pulled By: malfet

fbshipit-source-id: 3fc5828e44a4c05ba0e89e92613e6ebbdb260626
(cherry picked from commit c179fba21cfa2a0093fad50ccad5a22dd7cff52c)
2022-04-20 17:41:59 +00:00
Ivan Yashchuk
bba4780232 Enable autograd wrt sparse CSR tensors
This pull request enables accumulating gradients for the CSR tensor.
Functions that work and are tested:
- tensor.abs()
- tensor.neg()
- tensor.conj_physical()
- torch.addmm

`torch.mm` also works, but tests will be added later.

In addition, this PR adds throwing an error when trying to access strides, storage, and contiguity info on a CSR tensor.

`tensor.to_sparse_csr().to_sparse_csr()` was failing and now fixed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75435
Approved by: https://github.com/cpuhrsch
2022-04-19 18:42:45 +00:00
PyTorch MergeBot
5c56b2286b Revert "Remove -Wno-unused-variable from utils.cmake"
This reverts commit 018cbe1f5c.

Reverted https://github.com/pytorch/pytorch/pull/75538 on behalf of https://github.com/seemethere
2022-04-19 17:19:09 +00:00
Nikita Shulga
018cbe1f5c Remove -Wno-unused-variable from utils.cmake
[Comment](https://github.com/pytorch/pytorch/pull/62445/files#r680132022) claims, it got added for consistency with  top level CMakeLists.txt, but `-Wno-unused-variable` is not mentioned there.

Modify violations in 50+ files that were added in the interim by either removing unused variables, or decorating the code with `C10_UNUSED` if local variable is likely used to extend object lifetime until the end of the block.

Caused preventable revert in https://github.com/pytorch/pytorch/pull/72633#issuecomment-1092300787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75538
Approved by: https://github.com/cpuhrsch
2022-04-19 15:26:55 +00:00
Peter Bell
cc56fac213 Fix complex to real casting warning in _to_copy backward
Fixes #75781

A Real->Complex cast should result in a gradient with no imaginary
component, so discarding the imaginary component is expected.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75805

Approved by: https://github.com/albanD
2022-04-19 14:04:13 +00:00
soulitzer
8721abc429 Add forward AD support for norm, dist, F.pairwise_dist, F.normalize
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74205

Approved by: https://github.com/albanD
2022-04-13 15:03:20 +00:00
soulitzer
76614b3a33 Test linalg vector norm subgradient
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75103

Approved by: https://github.com/albanD
2022-04-12 20:54:30 +00:00
anjali411
91d134093e Add fastpath for stack and cat JVP computation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75590

Approved by: https://github.com/albanD, https://github.com/soulitzer
2022-04-11 18:10:09 +00:00
soulitzer
b10d151745 Ensure convolution_backward respects output_mask
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75298

Approved by: https://github.com/albanD
2022-04-08 19:27:41 +00:00
Mikayla Gawarecki
e9a8e6f74a Add include_self flag to scatter_reduce
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74607

Approved by: https://github.com/cpuhrsch
2022-04-05 16:31:39 +00:00
Nikita Vedeneev
5b142ce5ce cholesky_inverse: complex autograd, forward AD and correct tests.
As per title.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75033
Approved by: https://github.com/soulitzer
2022-04-01 20:31:03 +00:00
Mikayla Gawarecki
2bfa018462 [BC-breaking] Use ScatterGatherKernel for scatter_reduce (CPU-only) (#74226)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74226

Update signature of `scatter_reduce_` to match `scatter_/scatter_add_`

`Tensor.scatter_reduce_(int64 dim, Tensor index, Tensor src, str reduce)`

- Add new reduction options in ScatterGatherKernel.cpp and update `scatter_reduce` to call into the cpu kernel for `scatter.reduce`
- `scatter_reduce` now has the same shape constraints as `scatter_` and `scatter_add_`
- Migrate `test/test_torch.py:test_scatter_reduce` to `test/test_scatter_gather_ops.py`

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D35222842

Pulled By: mikaylagawarecki

fbshipit-source-id: 84930add2ad30baf872c495251373313cb7428bd
(cherry picked from commit 1b45139482e22eb0dc8b6aec2a7b25a4b58e31df)
2022-04-01 05:57:45 +00:00
Kurt Mohler
5375b2e994 Resolve int[]? arguments to new OptionalIntArrayRef class
This PR uses the `OptionalArrayRef` template class that was drafted in #64084.

Fixes #44409
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70864
Approved by: https://github.com/ezyang
2022-03-26 01:45:50 +00:00
soulitzer
a4c81b13f3 Add forward AD support for clamp when bounds are tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74042

Approved by: https://github.com/albanD
2022-03-24 14:31:40 +00:00
soulitzer
de73f9a558 Add forward AD support for logsumexp, log_softmax, softmax, nll_loss, and cross_entropy (#73741)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73741

There are probably more perf improvements that can be made, for example reusing more quantities from forward, doing more things inplace, but in the spirit of improving coverage, this is probably OK for now.

Note: I didn't do anything with half_to_float, but CUDA (locally) hasn't complained yet

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D34690141

Pulled By: soulitzer

fbshipit-source-id: fe934e191fee2c8e956d7a5f4b553923adf1b33f
(cherry picked from commit ae49aff7f7c8496e04a3ce7667d8f068ca0a52ec)
2022-03-08 00:46:27 +00:00
soulitzer
e6afa4f771 batch_norm_jvp: improve error message when running_{mean,var} have forward grad defined (#73655)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73655

Fixes: https://github.com/pytorch/pytorch/issues/73541

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D34586758

Pulled By: soulitzer

fbshipit-source-id: 689dba3ac159e50b596381c27e23ef1fd8122a40
(cherry picked from commit 81ea860fbe3c217b0100730f4b74e8d5f9bf1b61)
2022-03-02 21:31:29 +00:00
Xiao Wang
89b4cfb49f Disable TF32 in some linalg functions (#73460)
Summary:
Disable TF32 in some linalg functions

See also https://github.com/pytorch/pytorch/issues/67948 #50453 https://github.com/pytorch/pytorch/issues/44240

Pull Request resolved: https://github.com/pytorch/pytorch/pull/73460

Reviewed By: albanD

Differential Revision: D34493487

Pulled By: ngimel

fbshipit-source-id: 958cd968ea09df3b5a4d2b4a26aaf0dfddc53981
(cherry picked from commit cd75ec645b86c4b4a66c35696ce891d006f3833b)
2022-02-28 23:28:52 +00:00
Ansley Ussery
e4214929c5 Port amax to structured kernel (#72124)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/72124

Reviewed By: bdhirsh

Differential Revision: D34215708

Pulled By: ansley

fbshipit-source-id: fee887e331cb8bd9fab3d9d958ff13ac8d07be27
(cherry picked from commit 94dbb5b7e7)
2022-02-16 06:33:09 +00:00
Ryan Spring
4f8b986e28 Implement Tanh Gelu Approximation (#61439)
Summary:
1. Implements https://github.com/pytorch/pytorch/issues/39853
2. Adds approximate boolean flag to Gelu
3. Enables Tanh Gelu approximation
4. Adds double backward support for Gelu
5. Enable Tanh Gelu in NvFuser

```
def gelu(x, approximate : str = 'none'):
    if approximate == 'tanh':
        # sqrt(2/pi) = 0.7978845608028654
        return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0))))
    else:
        return x * normcdf(x)
```

Linking XLA PR - https://github.com/pytorch/xla/pull/3039

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61439

Reviewed By: VitalyFedyunin

Differential Revision: D33894937

Pulled By: jbschlosser

fbshipit-source-id: b65e8fb6ea66168af8f34f45ed50e92737a33851
(cherry picked from commit 6e986f91a9)
2022-02-14 03:40:32 +00:00
lezcano
bf09ece782 Make svd / svdvals fully functorch compatible (#72181)
Summary:
This should (hopefully) make all the CI from `functorch` go green (including jvp's!) after changing `VARIADIC_BDIMS_BOXED(_svd_helper);` with `VARIADIC_BDIMS_BOXED(_linalg_svd);` and removing all the skip and xfails associated to `linalg.svdvals`.

Locally, there's just one test that started failing because of this, and that is `test_vmapjvpall_norm_nuc_cpu_float32`. I have no idea what's going on here, but it's a jvp product, so not a regression, and it might very well be caused by the jvp of other operation within `norm_nuc` as this is a composite operation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72181

Reviewed By: ngimel

Differential Revision: D33952744

Pulled By: zou3519

fbshipit-source-id: 2a2510d97eed4a0bfc25615264ddd36e38856efe
(cherry picked from commit 5805fa107c)
2022-02-03 03:21:22 +00:00
Nikita Shulga
74c44ba9d6 Revert D33850228: [pytorch][PR] Implement Tanh Gelu Approximation
Test Plan: revert-hammer

Differential Revision:
D33850228 (23d03025dc)

Original commit changeset: 3cc33fb298e4

Original Phabricator Diff: D33850228 (23d03025dc)

fbshipit-source-id: 9436e7df73c2b2e2011f321674f24973316d3692
(cherry picked from commit c9efb58223)
2022-01-31 17:44:19 +00:00
Ryan Spring
23d03025dc Implement Tanh Gelu Approximation (#61439)
Summary:
1. Implements https://github.com/pytorch/pytorch/issues/39853
2. Adds approximate boolean flag to Gelu
3. Enables Tanh Gelu approximation
4. Adds double backward support for Gelu
5. Enable Tanh Gelu in NvFuser

```
def gelu(x, approximate : str = 'none'):
    if approximate == 'tanh':
        # sqrt(2/pi) = 0.7978845608028654
        return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0))))
    else:
        return x * normcdf(x)
```

Linking XLA PR - https://github.com/pytorch/xla/pull/3039

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61439

Reviewed By: cpuhrsch

Differential Revision: D33850228

Pulled By: jbschlosser

fbshipit-source-id: 3cc33fb298e480d7ecc5c67716da019d60c6ab33
(cherry picked from commit 3a53b3e94f)
2022-01-31 17:07:45 +00:00
Joel Schlosser
cb823d9f07 Revert D33744717: [pytorch][PR] Implement Tanh Gelu Approximation
Test Plan: revert-hammer

Differential Revision:
D33744717 (f499ab9cef)

Original commit changeset: d64532a562ed

Original Phabricator Diff: D33744717 (f499ab9cef)

fbshipit-source-id: 396c3f63de5865f894dbc353d0790a01a624be93
(cherry picked from commit e9fb2d1db1)
2022-01-28 18:35:01 +00:00
Ryan Spring
f499ab9cef Implement Tanh Gelu Approximation (#61439)
Summary:
1. Implements https://github.com/pytorch/pytorch/issues/39853
2. Adds approximate boolean flag to Gelu
3. Enables Tanh Gelu approximation
4. Adds double backward support for Gelu
5. Enable Tanh Gelu in NvFuser

```
def gelu(x, approximate : str = 'none'):
    if approximate == 'tanh':
        # sqrt(2/pi) = 0.7978845608028654
        return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0))))
    else:
        return x * normcdf(x)
```

Linking XLA PR - https://github.com/pytorch/xla/pull/3039

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61439

Reviewed By: mikaylagawarecki

Differential Revision: D33744717

Pulled By: jbschlosser

fbshipit-source-id: d64532a562ed53247bb4fa52bb16722634d5c187
(cherry picked from commit 4713dd9cca)
2022-01-28 16:59:09 +00:00
kshitij12345
de44a50f14 index_backward: use out-of-place index_put if any input is subclass (#71779)
Summary:
Reference: https://github.com/pytorch/functorch/issues/393

Context :

The derivative of `__getitem__`/`index` is
f5a71ec2d6/tools/autograd/derivatives.yaml (L733-L734)

where `index_backward` is defined as
f5a71ec2d6/torch/csrc/autograd/FunctionsManual.cpp (L3892-L3894)

Problem arises when `grad` is not BatchedTensor but one of the other input is. In that case, `grad.new_zeros` returns an unbatched tensor and call to the inplace `_index_put_impl_` errors as it expects `zeros_like_self` to be Batched.

To avoid this, we dispatch to out-of-place `index_put` if any of the input tensor is subclassed otherwise we dispatch to the inplace `_index_put_impl_`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71779

Reviewed By: albanD

Differential Revision: D33790596

Pulled By: zou3519

fbshipit-source-id: 9d6d81b758740cab7b3db9b905f1e8053f82b835
(cherry picked from commit ba0407a86e)
2022-01-28 16:19:34 +00:00
soulitzer
51ae9ccba4 Fix forward AD for cudnn batch norm (#71901)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71901

We didn't catch this initially because CuDNN is not being tested on CI.

The following tests fail on master (if we build with CuDNN), but pass with this PR:
- `test_forward_mode_AD_nn_functional_batch_norm_cuda_float64`
- `test_forward_mode_AD_nn_functional_instance_norm_cuda_float64`

I don't think it is documented anywhere, but from the tests passing now I'm going to guess `result1` and `result2` return `mean` and `invstd` respectively. Previously, I thought mean and variance were returned because the variables were named `saved_mean` and `saved_var`.

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D33818652

Pulled By: soulitzer

fbshipit-source-id: ecee760f5aec620dc70f57de4fb3573c8f2f5f31
(cherry picked from commit 73fd3e021c)
2022-01-27 23:55:37 +00:00