Summary:
Continuing the work from https://github.com/pytorch/pytorch/pull/146427
Adds the `torch.float8_e8m0fnu` dtype to PyTorch, as detailed in
https://github.com/pytorch/pytorch/issues/146414 . Please see the issue for a detailed definition of the format. Example of basic functionality:
```python
import torch
# round trip
x0 = torch.randn(4, 4, dtype=torch.float32)
x1 = x0.to(torch.float8_e8m0fnu) # RNE rounding
x2 = x1.to(torch.float32) # 2 ** exponent
# creation with empty
x0 = torch.empty(4, 4, dtype=torch.float8_e8m0fnu)
# printing
print(x0)
```
Done in this PR:
* numerical correctness
* op coverage (except for `torch._scaled_mm`): create tensor, cast to/from float32
* printing a tensor works
For future PRs:
* performance optimizations for casting
* torch._scaled_mm
* PT2
* various cleanups (detailed in comments with issue numbers)
Test Plan:
```
pytest test/quantization/core/experimental/test_float8.py -s
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147466
Approved by: https://github.com/drisspg
Proposal of two float8 variants - e5m2 and e4m3 - based on https://arxiv.org/pdf/2209.05433.pdf
Hide all Float8 operator implementations behind `#if !defined(C10_MOBILE)` guard to keep Android build size almost unchanged
TODO:
- Refactor duplicated code
- Cleanup unbalanced pragma pop in dtype utils
- Add native implementation on the CUDA size
Co-authored-by: Nikita Shulga <nshulga@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104242
Approved by: https://github.com/albanD
Proposal of two float8 variants - e5m2 and e4m3 - based on https://arxiv.org/pdf/2209.05433.pdf
Hide all Float8 operator implementations behind `#if !defined(C10_MOBILE)` guard to keep Android build size almost unchanged
TODO:
- Refactor duplicated code
- Cleanup unbalanced pragma pop in dtype utils
- Add native implementation on the CUDA size
Co-authored-by: Nikita Shulga <nshulga@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104242
Approved by: https://github.com/albanD
Thus avoiding `TypeError: 'float' object cannot be interpreted as an integer` when trying to create integer tensor from floating point values
Use `c10::checked_convert` to detect overflows during tensor construction from scalars. Modify sparse_csr test that violated this rule
Fixes#69319
Tested in #81233
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81372
Approved by: https://github.com/ezyang, https://github.com/ngimel
Summary:
Since `char` is not guaranteed to be signed on all platforms (it is unsigned on ARM)
Fixes https://github.com/pytorch/pytorch/issues/52146
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52616
Test Plan: Run ` python3 -c "import torch;a=torch.tensor([-1], dtype=torch.int8);print(a.tolist())"` on arm-linux system
Reviewed By: walterddr
Differential Revision: D26586678
Pulled By: malfet
fbshipit-source-id: 91972189b54f86add516ffb96d579acb0bc13311
Summary:
Add ComplexHalf case to toValueType, which fixes the logic how view_as_real and view_as_complex slices complex tensor to the floating point one, as it is used to generate tensor of random complex values, see:
018b4d7abb/aten/src/ATen/native/DistributionTemplates.h (L200)
Also add ability to convert python complex object to `c10::complex<at::Half>`
Add `torch.half` and `torch.complex32` to the list of `test_randn` dtypes
Fixes https://github.com/pytorch/pytorch/issues/43143
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43279
Reviewed By: mrshenli
Differential Revision: D23230296
Pulled By: malfet
fbshipit-source-id: b4bb66c4c81dd867e72ab7c4563d73f6a4d80a44
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18165
ghimport-source-id: 55cb3fb63a25c2faab1725b4ec14c688bf45bd38
Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18166 Bool Tensor for CUDA
* **#18165 Resolved comments from Bool Tensor for CPU PR**
-------
------------
This is a follow up PR that resolves some additional feedback on one the of previous Bool Tensor PRs.
gchanan, here is a list of almost all the comments from the original PR with respective fixes and replies:
**[utils/python_scalars.h]** why is this converting from uint8_t and not bool? (comment?)
When i was adding this, i was testing by creating a tensor and then calling its .tolist(). it worked for bool and uint8_t equally good so i left uint8_t as thought it makes more sense as we are calling PyBool_FromLong. �Changing it to bool.
**[ATen/Dispatch.h]**better name?.
fixed.
**[test/test_torch.py]** what about other factories, such as full? (and more).
There is a test that goes through the factory methods - test_tensor_factories_empty. i added some bool cases above it and added a comment that once CUDA will be done, i will unite them and it will iterate not just between CUDA and CPU but also all types. ��Adding all bool cases now. Will unite in CUDA PR.
**[generic/THTensorMath.h]** any changes in this file actually needed?
Bad merge. Fixed.
**[TH/THTensor.h]** this generates code for random, clampedRandom, and cappedRandom -- do we have tests for all of these with bool?
Added
**[c10/core/ScalarType.h]** I'm not very confident about the lack of Bool here -- can you look at the call sites and see what makes sense to do here?
Added bool to the macro and created a similar one without for a single case which fails the build with errors:
_./torch/csrc/jit/symbolic_variable.h:79:20: error: ambiguous overload for ‘operator*’ (operand types are ‘const torch::jit::SymbolicVariable’ and ‘torch::jit::Value*’)
return (*this) * insertConstant(rhs);_
Differential Revision: D14605105
fbshipit-source-id: abf82d50e8f8c50b386545ac068268651b28496d
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary: Printing for complex numbers requires loading and storing between `Py_complex` and `std::complex`. This patch aims to support this for the plugin.
Differential Revision: D9771808
Pulled By: ezyang
fbshipit-source-id: 024865f1945d63ddb5efc775a35438c8ea06408e