Summary:
Extra C binding module for flatbuffer was introduced because
not all dependencies of Pytorch want (or can) bundle in flatbuffer.
However, flatbuffer is in by default now so this separate binding is not longer needed.
Test Plan: existing unit tests
Differential Revision: D44352583
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97476
Approved by: https://github.com/dbort
Changes to `_native_batch_norm_legit` and `upsample_nearest2d` in `serialized_shape_function_registry.cpp` are made just because this file is auto-generated, and the file was not auto-generated after the changes in `_shape_functions.py` for those two ops.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93919
Approved by: https://github.com/davidberard98
**Summary** NamedTuple attributes can be annotated to declare their type:
```python
class MyNamedTuple(NamedTuple):
x: int
y: torch.Tensor
z: MyOtherType
```
Normally in python you can also declare your types as strings, `x: 'int'`. But NamedTuples previously didn't support this, because their annotation evaluation process was slightly different. This PR updates the NamedTuple attribute type annotation evaluation method to support ForwardRef declarations (i.e. declaring as strings).
**Details**
Below I repeat the comment I left in _jit_internal.py:
NamedTuple types are slightly different from normal types.
Normally, annotations are evaluted like this (during jit.script):
1. Load strings of python code into c++ and parse.
2. Get annotations as strings
3. Use the PythonResolver's resolution callback (rcb) to convert the string into a python object
4. We call into annotations.py:ann_to_type to convert python obj from step 3 into a type that torchscript understands.
NamedTuples are more complicated, because they have sub-types. Normally, once we have the NamedTuple type object from #3, we can just look at the annotation literal values and use ann_to_type directly on them.
But sometimes, users will annotate with string literals, e.g.
```
x: 'int'
```
This also happens with PEP563 (from __forward__ import annotations)
These annotations appear in the annotation dict as ForwardRef('int').
Then, we need to convert the string into a python object. This requires having local context for custom objects or imported types. rcb() is what gives us this. So, we plumb rcb through the stack so it can be used in this context for the if block below.
FAQ:
- Why do we need this special handling for NamedTuple but string annotations work fine for normal types? Normally, we parse the string directly and then call rcb() directly from C++.
- Why not use ForwardRef._evaluate? For that, we need globals() and locals() for the local context where the NamedTuple was defined. rcb is what lets us look up into these. So, basically rcb does the hard work for us.
- What is rcb? rcb is a ResolutionCallback - python callable that takes a string and returns a type. It's generated by `createResolutionCallback.*` in _jit_internal.py.
**Why is this only partial support**:
This only plumbs the rcb through some paths. In particular, the `toSugaredValue` path uses a fake rcb.
**Alternatives**:
We could also treat this the way we treat non-nn.Module classes: we evaluate them separately, ahead of time. That solution is probably better, but probably requires a more risky refactor for the way NamedTuples are handled.
Fixes#95858
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96933
Approved by: https://github.com/qihqi
There are two assertions in `torch.jit.annotations.try_ann_to_type` that could benefit from adding source level location information.
For example, the current assertion:
```
msg = "Unsupported annotation {} could not be resolved because {} could not be resolved."
assert valid_type, msg.format(repr(ann), repr(contained))
```
reports:
```
AssertionError: Unsupported annotation typing.Union[typing.Dict, NoneType] could not be resolved because typing.Dict could not be resolved at
```
I find it beneficial to know from which line of code this assertion was triggered. Adding the location information then reports:
```
AssertionError: Unsupported annotation typing.Union[typing.Dict, NoneType] could not be resolved because typing.Dict could not be resolved at
File "/home/schuetze/Documents/work/github/prediction_net/multimodal/models/heads/retina_head.py", line 189
def forward(self, fpn_features: t.Dict[str, torch.Tensor],
inputs: t.Dict[str, torch.Tensor],
gts: t.Optional[t.Dict] = None) -> t.Dict[str, t.Any]:
~~~~~~~~~~~~~~~~~~ <--- HERE
"""
"""
```
Adding these location information are related to #96420 but these changes in this PR can be made without any API changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96423
Approved by: https://github.com/davidberard98
Fixes https://github.com/pytorch/pytorch/issues/93485
```python
import torch
from torchvision.models import resnet50
model = resnet50(weights=None)
compile_model = torch.compile(model)
print(type(compile_model))
example_forward_input = torch.rand(1, 3, 224, 224)
c_model_traced = torch.jit.trace(compile_model, example_forward_input) # or torch.jit.script
torch.jit.save(c_model_traced, "c_trace_model.pt")
```
Should I raise a warning if a user tries to compile a scripted or traced model as well? It works just fine now on resnet but not sure if it's that something we want to explicitly discourage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91681
Approved by: https://github.com/desertfire
This PR optimizes the guards overhead introduced by dynamo tracing module forward hooks.
It can and maybe should be followed by a wider change proposed by @voznesenskym to optimize specialized nnmodules by 'observing' any user mutations and directly invalidating the root guard, obviating the need to install other nnmodule guards. (But this observer change seems more involved...)
Idea: maintain a flag, and keep it up to date whenever adding or
removing hooks. Use the flag rather than dict checks to enter the call fast path.
- need to extend RemovableHandle to keep a ref to nnModule so it can update the flag on removal.
- also need to handle the flag in ScriptModule which still uses the python call impl when called from python.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95931
Approved by: https://github.com/ezyang, https://github.com/voznesenskym
Changes:
- #95200
1. Recognize `.py.in` and `.pyi.in` files as Python in VS Code for a better development experience.
2. Fix deep setting merge in `tools/vscode_settings.py`.
- => this PR: #95267
3. Use `Namedtuple` rather than `namedtuple + __annotations__` for `torch.nn.utils.rnn.PackedSequence_`:
`namedtuple + __annotations__`:
```python
PackedSequence_ = namedtuple('PackedSequence_',
['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices'])
# type annotation for PackedSequence_ to make it compatible with TorchScript
PackedSequence_.__annotations__ = {'data': torch.Tensor, 'batch_sizes': torch.Tensor,
'sorted_indices': Optional[torch.Tensor],
'unsorted_indices': Optional[torch.Tensor]}
```
`Namedtuple`: Python 3.6+
```python
class PackedSequence_(NamedTuple):
data: torch.Tensor
batch_sizes: torch.Tensor
sorted_indices: Optional[torch.Tensor]
unsorted_indices: Optional[torch.Tensor]
```
- #95268
4. Sort import statements and remove unnecessary imports in `.pyi`, `.pyi.in` files.
5. Format `.pyi`, `.pyi.in` files and remove unnecessary ellipsis `...` in type stubs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95267
Approved by: https://github.com/janeyx99
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
Optimize unnecessary collection cast calls, unnecessary calls to list, tuple, and dict, and simplify calls to the sorted builtin. This should strictly improve speed and improve readability.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94323
Approved by: https://github.com/albanD
`@torch.jit.unused` and `@torch.jit.ignore` do not allow to keep in torch scripted class member function, that has non scriptable declaration (e.g. return type)
Adding FunctionModifier _DROP to allow fully skip those functions from scripting and keep them in the code of the scripted class.
E.g. it can be used for:
```
@torch.jit._drop
def __fx_create_arg__(self, tracer: torch.fx.Tracer) -> torch.fx.node.Argument:
# torch.fx classes are not scriptable
return tracer.create_node(
"call_function",
CFX,
args=(tracer.create_arg(self.features),),
kwargs={},
)
def __iter__(self) -> Iterator[torch.Tensor]:
return iter(self.a)
```
Testing:
Added test case in `test/jit/test_types.py` with non-scriptable type annotations (fx.* classes) that fails before fix and passes after.
```
python test/test_jit.py
```
Differential Revision: [D42774830](https://our.internmc.facebook.com/intern/diff/D42774830)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93012
Approved by: https://github.com/davidberard98
We want to make TorchRec sharded models TorchScriptable.
TorchRec sharded models uses generic types Awaitable[W] and LazyAwaitable[W] (https://github.com/pytorch/torchrec/blob/main/torchrec/distributed/types.py#L212).
In sharded model those types are used instead of contained type W, having the initialization function that produces object of type W.
At the moment when the first attribute of W is requested - `LazyAwaitable[W]` will call its initialization function (on the same stack), cache the result inside and work transparently as an object of W. So we can think about it as a delayed object initialization.
To support this behavior in TorchScript - we propose a new type to TorchScript - `Await`.
In eager mode it works the same as `LazyAwaitable[W]` in TorchRec, being dynamically typed - acting as a type `W` while it is `Await[W]`.
Within torchscript it is `Await[W]` and can be only explicitly converted to W, using special function `torch.jit.awaitable_wait(aw)`.
Creation of this `Await[W]` is done via another special function `torch.jit.awaitable(func, *args)`.
The semantic is close to `torch.jit.Future`, fork, wait and uses the same jit mechanics (inline fork Closures) with the difference that it does not start this function in parallel on fork. It only stores as a lambda inside IValue that will be called on the same thread when `torch.jit.awaitable_wait` is called.
For example (more examples in this PR `test/jit/test_await.py`)
```
def delayed(z: Tensor) -> Tensor:
return Tensor * 3
@torch.jit.script
def fn(x: Tensor):
aw: Await[int] = torch.jit._awaitable(delayed, 99)
a = torch.eye(2)
b = torch.jit._awaitable_wait(aw)
return a + b + x
```
Functions semantics:
`_awaitable(func -> Callable[Tuple[...], W], *args, **kwargs) -> Await[W]`
Creates Await object, owns args and kwargs. Once _awaitable_wait calls, executes function func and owns the result of the function. Following _awaitable_wait calls will return this result from the first function call.
`_awaitable_wait(Await[W]) -> W`
Returns either cached result of W if it is not the first _awaitable_wait call to this Await object or calls specified function if the first.
`_awaitable_nowait(W) -> Await[W]`
Creates trivial Await[W] wrapper on specified object To be type complaint for the corner cases.
Differential Revision: [D42502706](https://our.internmc.facebook.com/intern/diff/D42502706)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90863
Approved by: https://github.com/davidberard98
Continuation after https://github.com/pytorch/pytorch/pull/90163.
Here is a script I used to find all the non-existing arguments in the docstrings (the script can give false positives in presence of *args/**kwargs or decorators):
_Edit:_
I've realized that the indentation is wrong for the last `break` in the script, so the script only gives output for a function if the first docstring argument is wrong. I'll create a separate PR if I find more issues with corrected script.
``` python
import ast
import os
import docstring_parser
for root, dirs, files in os.walk('.'):
for name in files:
if root.startswith("./.git/") or root.startswith("./third_party/"):
continue
if name.endswith(".py"):
full_name = os.path.join(root, name)
with open(full_name, "r") as source:
tree = ast.parse(source.read())
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
all_node_args = node.args.args
if node.args.vararg is not None:
all_node_args.append(node.args.vararg)
if node.args.kwarg is not None:
all_node_args.append(node.args.kwarg)
if node.args.posonlyargs is not None:
all_node_args.extend(node.args.posonlyargs)
if node.args.kwonlyargs is not None:
all_node_args.extend(node.args.kwonlyargs)
args = [a.arg for a in all_node_args]
docstring = docstring_parser.parse(ast.get_docstring(node))
doc_args = [a.arg_name for a in docstring.params]
clean_doc_args = []
for a in doc_args:
clean_a = ""
for c in a.split()[0]:
if c.isalnum() or c == '_':
clean_a += c
if clean_a:
clean_doc_args.append(clean_a)
doc_args = clean_doc_args
for a in doc_args:
if a not in args:
print(full_name, node.lineno, args, doc_args)
break
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90505
Approved by: https://github.com/malfet, https://github.com/ZainRizvi
Using the same repro from the issue (but with BatchNorm2D)
Rectifies native_batch_norm schema by splitting the schema into 2:
1. one will have NON-optional alias-able running_mean and running_var inputs
2. the other will just not have those parameters at all (no_stats variation)
**Calling for name suggestions!**
## test plan
I've added tests in test_functionalization.py as well as an entry in common_method_invocations.py for `native_batch_norm_legit`
CI should pass.
## next steps
Because of bc/fc reasons, we reroute native_batch_norm to call our new schemas ONLY through the python dispatcher, but in 2 weeks or so, we should make `native_batch_norm_legit` the official batch_norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88697
Approved by: https://github.com/albanD
closes#35643
This PR is mostly borrowed from #82042. Thanks @Padarn for implementing
the first version and debugging into the errors.
Based on the discussion in #82042 this PR adds a with_kwargs
argument to register_forward_pre_hook and register_forward_hook
methods. When the arg is set to true, the provided hook must accept
kwargs args. Under the hook, this PR adds a
`_forward_pre_hooks_with_kwargs` and a `_forward_hook_with_kwargs`
set to keep track of which hooks accept kwargs.
Differential Revision: [D41431111](https://our.internmc.facebook.com/intern/diff/D41431111)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89389
Approved by: https://github.com/soulitzer
Introduce `_eval_no_call` method, that evaluates statement only if it
does not contain any calls(done by examining the bytecode), thus preventing command injection exploit
Added simple unit test to check for that
`torch.jit.annotations.get_signature` would not result in calling random
code.
Although, this code path exists for Python-2 compatibility, and perhaps
should be simply removed.
Fixes https://github.com/pytorch/pytorch/issues/88868
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89189
Approved by: https://github.com/suo
Summary:
Python's function parsing from the `ast` module records the line number of the function definition, not the first decorator. So this diff fixes crashes like this:
```
IndexError: vector::_M_range_check: __n (which is 10) >= this->size() (which is 8)
```
Test Plan: New unit test
Differential Revision: D40726352
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87804
Approved by: https://github.com/tugsbayasgalan, https://github.com/davidberard98
# Support unpacking python dictionary in **torch.jit.trace()**
## Problem statement & Motivation
### Problem 1(usability):
Say, if you have a model and its forward method defined as follows:
**`def forward(self, key1=value1, key2=value2, key3=value3)`**
And you have a dataset and each data point in the dataset is a python dict as follows:
**`data = {key1:value1, key3:value3, key2:value2}`**
The problem is that if you want to trace the model using the dict data by the giving dataset, you need unpack the dictionary and reorder its value manually and make up a tuple as **`data_tuple = (value1, value2, value3)`** as the **`example_inputs`** parameter of **`torch.jit.trace()`**. This marshalling process is not user friendly.
### Problem 2 (feasibility):
Say, if you have a model and its forward method defined as follows:
**`def forward(self, key1=None, key2=None, key3=None)`** -> The default value is **None**
And you have a dataset and each data point in the dataset is a python dict as follows:
**`data = {key1:value1, key3:value3}`** -> Only **part of** the required value by forward was given, the rest use the default value.
The problem is that if you want to trace the model using the dict data by the giving dataset, it's not feasible at all. Cause neither you can pass a tuple like **`T1 = (value1, value3)`** nor **`T2 = (value1, None, value3)`**. T1 will mismatch value3 with key2 and T2 include **None** type which will be blocked by tracer's type checking. (Of course you can pass **`T3 = (value1,)`** to make the trace function finish without exception, but the traced model you get probably is not what you expect cause the different input may result in different traced result.).
These problems come from the HuggingFace's PT model, especially in text-classification tasks with datasets such as [MRPC,](https://paperswithcode.com/dataset/mrpc) [MNLI](https://paperswithcode.com/dataset/multinli) etc.
## Solution
To address these two issues, we propose to support a new type, that is, python dict as example_inputs parameter for torch.jit.trace(). We can base on the runtime type information of the example_inputs object to determine if we fall back to the original tuple path or go into the new dictionary path. Both problem 1 and problem 2 can be solved by utilizing the "**`**`**"
operator.
## Limitation & Mitigation
1. If we use dict as example_inputs to trace the model, then we have to pass a dictionary to the traced model too. (Cause probably we will change the order of debug name of the input parameter in torchscript IR, thus we can't assume the traced model's input parameters order are the same with the original model.). We need highlight this too in the document to mitigate this problem.
For example:
```
# fetch a data from dataloader, and the data is a dictionary
# and the example_inputs_dict is like: {key1:value1, key3:value3, key2:value2}
# the forward() is like: def forward(self, key1=value1, key2=value2, key3=value3)
example_inputs_dict = next(iter(dataloader))
jit_model = model.eval()
# use the dictionary to trace the model
jit_model = torch.jit.trace(jit_model, example_inputs_dict, strict=False) # Now the IR will be graph(%self : __torch__.module.___torch_mangle_n.Mymodule, %key1 : type1, %key3 : type3, %key2 : type2)
jit_model = torch.jit.freeze(jit_model)
# It's OK to use dict as the parameter for traced model
jit_model(**example_inputs_dict)
example_inputs_tuple = (value1, value3, value2)
# It's wrong to rely on the original args order.
jit_model(*example_inputs_tuple)
```
## Note
1. This PR will make some UT introduced in [39601](https://github.com/pytorch/pytorch/pull/39601) fail, which I think should be classified as unpacking a tuple containing a single dictionary element in our solution.
4. I think there is ambiguity since currently we only specify passing a tuple or a single Tensor as our example_inputs parameter in **torch.jit.trace()**'s documentation, but it seems we can still passing a dictionary.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81623
Approved by: https://github.com/davidberard98
The assert check are moved to top and the function now returns out. This is needed by the downstream torch-mlir project to correctly determine the output type.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85801
Approved by: https://github.com/eellison
### Description
Add oneDNN graph context manager API to be consistent with other fusers.
NNC and nvFuser have two ways to use: 1) a function to enable/disable and 2) a context manager. And the later way is used extensively in libraries like Dynamo. Currently oneDNN Graph fuser only has the former way. To promote the usage of oneDNN graph fuser, this PR creates the context manager for oneDNN graph fuser.
This PR should not affect any performance.
### Testing
A unit-test `test_context_manager` is added under `test/test_jit_llga_fuser.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82491
Approved by: https://github.com/malfet
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168