Fixes#109889
This PR adds `torch.export.export` as another `FXGraphExtractor` implementation. `torch.onnx.dynamo_export` automatically uses this new FX tracer when a `torch.export.ExportedProgram` is specified as `model`
Implementation is back compatible, thus non `ExportedProgram` models are handled the exact same way as before
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111497
Approved by: https://github.com/BowenBao
Fixes#109889
This PR adds `torch.export.export` as another `FXGraphExtractor` implementation. `torch.onnx.dynamo_export` automatically uses this new FX tracer when a `torch.export.ExportedProgram` is specified as `model`
Implementation is back compatible, thus non `ExportedProgram` models are handled the exact same way as before
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111497
Approved by: https://github.com/BowenBao
Merges startswith, endswith calls to into a single call that feeds in a tuple. Not only are these calls more readable, but it will be more efficient as it iterates through each string only once.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96754
Approved by: https://github.com/ezyang
* Reflect required arguments in method signature for each diagnostic rule. Previous design accepts arbitrary sized tuple which is hard to use and prone to error.

* Removed `DiagnosticTool` to keep things compact.
* Removed specifying supported rule set for tool(context) and checking if rule of reported diagnostic falls inside the set, to keep things compact.
* Initial overview markdown file.
* Change `full_description` definition. Now `text` field should not be empty. And its markdown should be stored in `markdown` field.
* Change `message_default_template` to allow only named fields (excluding numeric fields). `field_name` provides clarity on what argument is expected.
* Added `diagnose` api to `torch.onnx._internal.diagnostics`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87830
Approved by: https://github.com/abock
This PR adds an internal wrapper on the [beartype](https://github.com/beartype/beartype) library to perform runtime type checking in `torch.onnx`. It uses beartype when it is found in the environment and is reduced to a no-op when beartype is not found.
Setting the env var `TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK=ERRORS` will turn on the feature. setting `TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK=DISABLED` will disable all checks. When not set and `beartype` is installed, a warning message is emitted.
Now when users call an api with invalid arguments e.g.
```python
torch.onnx.export(conv, y, path, export_params=True, training=False)
# traning should take TrainingModel, not bool
```
they get
```
Traceback (most recent call last):
File "bisect_m1_error.py", line 63, in <module>
main()
File "bisect_m1_error.py", line 59, in main
reveal_error()
File "bisect_m1_error.py", line 32, in reveal_error
torch.onnx.export(conv, y, cpu_model_path, export_params=True, training=False)
File "<@beartype(torch.onnx.utils.export) at 0x1281f5a60>", line 136, in export
File "pytorch/venv/lib/python3.9/site-packages/beartype/_decor/_error/errormain.py", line 301, in raise_pep_call_exception
raise exception_cls( # type: ignore[misc]
beartype.roar.BeartypeCallHintParamViolation: @beartyped export() parameter training=False violates type hint <class 'torch._C._onnx.TrainingMode'>, as False not instance of <protocol "torch._C._onnx.TrainingMode">.
```
when `TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK` is not set and `beartype` is installed, a warning message is emitted.
```
>>> torch.onnx.export("foo", "bar", "f")
<stdin>:1: CallHintViolationWarning: Traceback (most recent call last):
File "/home/justinchu/dev/pytorch/torch/onnx/_internal/_beartype.py", line 54, in _coerce_beartype_exceptions_to_warnings
return beartyped(*args, **kwargs)
File "<@beartype(torch.onnx.utils.export) at 0x7f1d4ab35280>", line 39, in export
File "/home/justinchu/anaconda3/envs/pytorch/lib/python3.9/site-packages/beartype/_decor/_error/errormain.py", line 301, in raise_pep_call_exception
raise exception_cls( # type: ignore[misc]
beartype.roar.BeartypeCallHintParamViolation: @beartyped export() parameter model='foo' violates type hint typing.Union[torch.nn.modules.module.Module, torch.jit._script.ScriptModule, torch.jit.ScriptFunction], as 'foo' not <protocol "torch.jit.ScriptFunction">, <protocol "torch.nn.modules.module.Module">, or <protocol "torch.jit._script.ScriptModule">.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/justinchu/dev/pytorch/torch/onnx/_internal/_beartype.py", line 63, in _coerce_beartype_exceptions_to_warnings
return func(*args, **kwargs)
File "/home/justinchu/dev/pytorch/torch/onnx/utils.py", line 482, in export
_export(
File "/home/justinchu/dev/pytorch/torch/onnx/utils.py", line 1422, in _export
with exporter_context(model, training, verbose):
File "/home/justinchu/anaconda3/envs/pytorch/lib/python3.9/contextlib.py", line 119, in __enter__
return next(self.gen)
File "/home/justinchu/dev/pytorch/torch/onnx/utils.py", line 177, in exporter_context
with select_model_mode_for_export(
File "/home/justinchu/anaconda3/envs/pytorch/lib/python3.9/contextlib.py", line 119, in __enter__
return next(self.gen)
File "/home/justinchu/dev/pytorch/torch/onnx/utils.py", line 95, in select_model_mode_for_export
originally_training = model.training
AttributeError: 'str' object has no attribute 'training'
```
We see the error is caught right when the type mismatch happens, improving from what otherwise would become `AttributeError: 'str' object has no attribute 'training'`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83673
Approved by: https://github.com/BowenBao
### Description
- Clearer error messages with more context
- Created `SymbolicValueError` which adds context of the value to the error message
- Type annotation
example error message:
```
torch.onnx.errors.SymbolicValueError: ONNX symbolic does not understand the Constant node '%1 : Long(2, strides=[1], device=cpu) = onnx::Constant[value= 3 3 [ CPULongType{2} ]]()
' specified with descriptor 'is'. [Caused by the value '1 defined in (%1 : Long(2, strides=[1], device=cpu) = onnx::Constant[value= 3 3 [ CPULongType{2} ]]()
)' (type 'Tensor') in the TorchScript graph. The containing node has kind 'onnx::Constant'.]
Inputs:
Empty
Outputs:
#0: 1 defined in (%1 : Long(2, strides=[1], device=cpu) = onnx::Constant[value= 3 3 [ CPULongType{2} ]]()
) (type 'Tensor')
```
### Issue
- #77316 (Runtime error during symbolic conversion)
### Testing
Unit tested
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83007
Approved by: https://github.com/BowenBao