Commit Graph

110 Commits

Author SHA1 Message Date
Peter Bell
fd4e21c91e Add optional string support to native_functions schema (#43010)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43010

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D23751851

Pulled By: mruberry

fbshipit-source-id: 648f7430e1b7311eff28421f38e01f52d998fcbd
2020-09-18 14:57:24 -07:00
Lu Fang
f15e27265f [torch.fx] Add support for custom op (#43248)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43248

We add the support of __torch_function__ override for C++ custom op. The logic is the same as the other components, like torch.nn.Module.
Refactored some code a little bit to make it reusable.

Test Plan: buck test //caffe2/test:fx -- test_torch_custom_ops

Reviewed By: bradleyhd

Differential Revision: D23203204

fbshipit-source-id: c462a86e407e46c777171da32d7a40860acf061e
2020-09-02 16:08:37 -07:00
Hameer Abbasi
3d46e02ea1 Add __torch_function__ for methods (#37091)
Summary:
According to pytorch/rfcs#3

From the goals in the RFC:

1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
   subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
   views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
   (so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
   functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)

This PR makes the following changes:

1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.

TODO:

- [x] Sequence Methods
- [x] Docs
- [x] Tests

Closes https://github.com/pytorch/pytorch/issues/28361

Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091

Reviewed By: ngimel

Differential Revision: D22765678

Pulled By: ezyang

fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
2020-08-05 20:44:13 -07:00
Sebastian Messmer
1542c41a67 Change C++ frontend to take optional<Tensor> arguments (#41947)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41947

Previously, if an op took an optional `Tensor?` argument, the C++ frontend (i.e. `at::op()` and `Tensor::op()`)
were generated to take `Tensor`. A previous PR (https://github.com/pytorch/pytorch/pull/41610) changed the kernels
to be written with `c10::optional<Tensor>` instead of `Tensor`, but that did not touch the C++ frontend yet.

This PR changes the C++ frontend API to take `c10::optional<Tensor>` instead of `Tensor` as well.
This should be mostly bc conserving. Since `Tensor` implicitly converts to `c10::optional<Tensor>`, any old code
calling an op with a `Tensor` would still work. There are likely corner cases that get broken though.
For example, C++ only ever does *one* implicit conversion. So if you call an op with a non-tensor object
that gets implicitly converted to a `Tensor`, then that previously worked since the API took a `Tensor` and
C++ allows one implicit conversion. Now it wouldn't work anymore because it would require two implicit conversions
(to `Tensor` and then to `c10::optional<Tensor>`) and C++ doesn't do that.

The main reasons for doing this are
- Make the C++ API more sane. Those arguments are optional and that should be visible from the signature.
- Allow easier integration for XLA and Autocast. Those backends generate code to wrap operators and forward
  operator arguments to calls to at::op(). After https://github.com/pytorch/pytorch/pull/41610, there was
  a mismatch because they had to implement operators with `optional<Tensor>` but call `at::op()` with `Tensor`,
  so they had to manually convert between those. After this PR, they can just forward the `optional<Tensor>`
  in their call to `at::op()`.
ghstack-source-id: 108873705

Test Plan: unit tests

Reviewed By: bhosmer

Differential Revision: D22704832

fbshipit-source-id: f4c00d457b178fbc124be9e884a538a3653aae1f
2020-07-31 16:11:55 -07:00
Nathan Goldbaum
1e230a5c52 rewrite C++ __torch_function__ handling to work with TensorList operands (#41575)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41575

Fixes https://github.com/pytorch/pytorch/issues/34294

This updates the C++ argument parser to correctly handle `TensorList` operands. I've also included a number of updates to the testing infrastructure, this is because we're now doing a much more careful job of testing the signatures of aten kernels, using the type information about the arguments as read in from `Declarations.yaml`. The changes to the tests are required because we're now only checking for `__torch_function__` attributes on `Tensor`, `Optional[Tensor]` and elements of `TensorList` operands, whereas before we were checking for `__torch_function__` on all operands, so the relatively simplistic approach the tests were using before -- assuming all positional arguments might be tensors -- doesn't work anymore. I now think that checking for `__torch_function__` on all operands was a mistake in the original design.

The updates to the signatures of the `lambda` functions are to handle this new, more stringent checking of signatures.

I also added override support for `torch.nn.functional.threshold` `torch.nn.functional.layer_norm`, which did not yet have python-level support.

Benchmarks are still WIP.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34725

Reviewed By: mruberry

Differential Revision: D22357738

Pulled By: ezyang

fbshipit-source-id: 0e7f4a58517867b2e3f193a0a8390e2ed294e1f3
2020-07-17 08:54:29 -07:00
David Reiss
fb9e44f8dd Add support for float[]? arguments in native_functions.yaml (#37175)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37175

ghstack-source-id: 106938114

Test Plan: Upcoming diffs use this for upsampling.

Differential Revision: D21209994

fbshipit-source-id: 1a71c07e45e28772a2bbe450b68280dcc0fe2def
2020-07-13 11:51:10 -07:00
Xiang Gao
c55d8a6f62 Remove std::complex from c10::Scalar (#39831)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39831

Differential Revision: D22018505

Pulled By: ezyang

fbshipit-source-id: 4719c0f1673077598c5866dafc7391d9e074f4eb
2020-07-07 20:31:42 -07:00
David Reiss
5e03a1e926 Add support for int[]? arguments in native_functions.yaml (#37174)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37174

ghstack-source-id: 106938112

Test Plan: Upcoming diffs use this for upsampling.

Differential Revision: D21210002

fbshipit-source-id: d6a55ab6420c05a92873a569221b613149aa0daa
2020-07-07 13:52:20 -07:00
David Reiss
6d642a6f6c Remove (most) Python 2 support from C++ code (#35614)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35614

Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up a lot of cruft that we put in place to support it.
These changes were all done manually, and I skipped anything that seemed
like it would take more than a few seconds, so I think it makes sense to
review it manually as well.

Test Plan: CI

Differential Revision: D20842876

Pulled By: dreiss

fbshipit-source-id: 18abf0d324ed2185ec6d27c864e935d856dcc6ad
2020-05-14 15:01:49 -07:00
anjali411
8e07b75cef Have DeviceType available in torch namespace (#38036)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38036

Resolves: https://github.com/pytorch/pytorch/issues/36946

Test Plan: Imported from OSS

Differential Revision: D21463610

Pulled By: anjali411

fbshipit-source-id: c4aabfac2cd1f05f8b66745aae0a17c2af4d9c9b
2020-05-11 16:06:52 -07:00
Pavel Belevich
c9a1fc2b31 replace Generator arguments with c10::optional<Generator> (#36232)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36232

The purpose of this PR is to replace `at::Generator generator = nullptr` with `c10::optional<at::Generator> = c10::nullopt` all over the code

* #36230 Replace std::shared_ptr with c10::intrusive_ptr in at::Generator

Test Plan: Imported from OSS

Differential Revision: D20943603

Pulled By: pbelevich

fbshipit-source-id: 65d335990f01fcc706867d5344e73793fad68ae6
2020-04-13 16:26:57 -07:00
Pavel Belevich
5306713a36 Replace Generator* with Generator that holds std::shared_ptr<GeneratorImpl> (#34468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34468

This PR prepares `at::Generator` for pybind11's `type_caster<at::Generator>` which is required to implement custom RNG in python. The following changes are done:
1. `at::Generator` was moved to `c10::GeneratorImpl` (similar to `c10::TensorImpl`)
2. `at::Generator` was recreated as a holder of `std::shared_ptr<c10::GeneratorImpl>` (similar to `at::Tensor` that holds `c10::intrusive_ptr<c10::TensorImpl>`)
3. Most of `at::Generator*` usages were replaced with `at::Generator`

TBD: replacing `Generator generator = nullptr` with `{}` requires JIT changes(adding Generator to IValue?)

Differential Revision: D20549420

Pulled By: pbelevich

fbshipit-source-id: 4c92a40eab8f033b359bb6c93f4cd84b07ee8d4e
2020-03-21 17:36:10 -07:00
Terence Feng
3c76b2aeea Replace THPLayout with at::Layout in Python Argument Parser (#34543) (#34584)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34584

Test Plan:
```
python setup.py develop
python test/test_torch.py
```
Output:
```
...
Ran 3834 tests in 198.825s

OK (skipped=180)
```

Imported from OSS

Differential Revision: D20403330

fbshipit-source-id: 41474d5e7001db070f98ac8379f909f0ac74deb6
2020-03-12 07:19:00 -07:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00
Nathan Goldbaum
fa80299bdf __torch_function__ overrides for torch.functional and torch.nn.functional (#32799)
Summary:
This adds `__torch_function__` support for all functions in `torch.functional` and `torch.nn.functional`.

The changes to C++ code and codegen scripts are to facilitate adding `__torch_function__` support for the native functions in `torch._C._nn`. Note that I moved the `handle_torch_function` C++ function to a header that both `python_torch_functions.cpp` and `python_nn_functions.cpp` include. The changes to `python_nn_functions.cpp` mirror the changes I made to `python_torch_functions.cpp` when `__torch_function__` support was first added in https://github.com/pytorch/pytorch/issues/27064. Due to the somewhat different way the `torch._C` and `torch._C._nn` namespaces are initialized I needed to create a new static reference to the `torch._C._nn` namespace (`THPNNVariableFunctions`). I'm not sure if that is the best way to do this. In principle I could import these namespaces in each kernel and avoid the global variable but that would have a runtime cost.

I added `__torch_function__` support to the Python functions in `torch.nn.functional` following the approach in https://github.com/pytorch/pytorch/issues/32194.

I re-enabled the test that checks if all functions in the `torch` namespace are explicitly tested for `__torch_function__` support. I also generalized the check to work for `torch.functional` and `torch.nn.functional` as well. This test was explicitly disabled in https://github.com/pytorch/pytorch/issues/30730 and I'm happy to disable it again if you think that's appropriate. I figured now was as good a time as any to try to re-enable it.

Finally I adjusted the existing torch API tests to suppress deprecation warnings and add keyword arguments used by some of the code in `torch.nn.functional` that were missed when I originally added the tests in https://github.com/pytorch/pytorch/issues/27064.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32799

Differential Revision: D19956809

Pulled By: ezyang

fbshipit-source-id: 40d34e0109cc4b9f3ef62f409d2d35a1d84e3d22
2020-02-21 08:38:37 -08:00
Basil Hosmer
544eab37d0 Move deprecation warning out of generated code into python_arg_parser. (#32907)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32907

All op-specific information used in this logic was available to the
parser itself, so the check can be done in that context, no codegen
needed.

No change in the warning behavior itself, mod minor formatting tweak -
passes existing tests. Saves like ~275K binary size on mac:
```
-rwxr-xr-x  1 bhosmer  1876110778   16502064 Feb  1 00:43 torch/lib/libtorch_python.dylib
-rwxr-xr-x  1 bhosmer  1876110778   16247888 Feb  1 00:44 torch/lib/libtorch_python.dylib
```

[codegen diff](https://github.com/bhosmer/scratch/compare/deprecation_warning_before...deprecation_warning_after)

More important than the size savings is the minimization of codegen. Ideally the generated artifact should express distinctive per-op properties in as minimal a form as practically possible - e.g. here instead of generating check-and-warn behavior into every binding, we generate only the data that triggers the behavior in the parser. (And actually we were generating it already.)

Test Plan: Imported from OSS

Differential Revision: D19679928

Pulled By: bhosmer

fbshipit-source-id: cf0140573118430720c6b797c762fe5be98acd86
2020-02-03 17:47:04 -08:00
Pavel Belevich
62b06b9fae Rename TensorTypeId to DispatchKey (#32154)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32154

TensorTypeId -> DispatchKey
	c10/core/TensorTypeId.h -> c10/core/DispatchKey.h
	c10/core/TensorTypeId.cpp -> c10/core/DispatchKey.cpp
	TensorTypeId::* -> DispatchKey::*
	TensorTypeId type_id -> DispatchKey dispatch_key
		type_id -> dispatch_key
	TensorTypeId::NumTensorIds -> DispatchKey::NumDispatchKeys
	RealTensorTypeId -> RealDispatchKey
TensorTypeSet -> DispatchKeySet
	TensorTypeIds -> DispatchKeys
	c10/core/TensorTypeSet.h -> c10/core/DispatchKeySet.h
	c10/core/TensorTypeSet.cpp -> c10/core/DispatchKeySet.cpp
	type_set() -> key_set()
	type_set_ -> key_set_
	typeSet -> keySet
ExcludeTensorTypeIdGuard -> ExcludeDispatchKeyGuard
IncludeTensorTypeIdGuard -> IncludeDispatchKeyGuard
LocalTensorTypeSet -> LocalDispatchKeySet
	c10/core/impl/LocalTensorTypeSet.h -> c10/core/impl/LocalDispatchKeySet.h
	c10/core/impl/LocalTensorTypeSet.cpp -> c10/core/impl/LocalDispatchKeySet.cpp
	tls_local_tensor_type_set -> tls_local_dispatch_key_set
	tls_is_tensor_type_id_excluded -> tls_is_dispatch_key_excluded
	tls_set_tensor_type_id_excluded -> tls_set_dispatch_key_excluded
	tls_is_tensor_type_id_included -> tls_is_dispatch_key_included
	tls_set_tensor_type_id_included -> tls_set_dispatch_key_included
MultiDispatchTensorTypeSet -> MultiDispatchKeySet
	multi_dispatch_tensor_type_set -> multi_dispatch_key_set
tensorTypeIdToBackend -> dispatchKeyToBackend
backendToTensorTypeId -> backendToDispatchKey
initForTensorTypeSet -> initForDispatchKeySet
inferred_type_set -> inferred_key_set
computeTensorTypeId -> computeDispatchKey
PODLocalTensorTypeSet raw_local_tensor_type_set -> PODLocalDispatchKeySet raw_local_dispatch_key_set
get_default_tensor_type_id -> get_default_dispatch_key
inferred_type_id -> inferred_dispatch_key
actual_type_id -> actual_dispatch_key
typeSetToDispatchKey_ -> dispatchKeySetToDispatchKey_
get_type_id() -> get_dispatch_key()
legacyExtractTypeId -> legacyExtractDispatchKey
extractTypeId -> extractDispatchKey

Test Plan: Imported from OSS

Differential Revision: D19398900

Pulled By: pbelevich

fbshipit-source-id: 234ad19f93d33e00201b61e153b740a339035776
2020-01-15 11:16:08 -08:00
Peter Bell
b0ac425dc4 Emit warning from deprecated torch function signatures (#32009)
Summary:
Continuation of https://github.com/pytorch/pytorch/issues/31514, fixes https://github.com/pytorch/pytorch/issues/28430
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32009

Test Plan:
I verified that the deprecation warnings only occur once on a relevant workflow. Built with:

```
buck build mode/opt //vision/fair/detectron2/tools:train_net
```

Ran with:

```
DETECTRON2_ENV_MODULE=detectron2.fb.env ~/local/train_net.par --config-file configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml --num-gpus 1 SOLVER.IMS_PER_BATCH 2
```

Inspected log:

```
[01/14 07:28:13 d2.engine.train_loop]: Starting training from iteration 0
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1299: UserWarning: This overload of add is deprecated:
add(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add(Tensor other, Number alpha)
buck-out/opt/gen/caffe2/generate-code=python_variable_methods.cpp/python_variable_methods.cpp:1334: UserWarning: This overload of add_ is deprecated:
add_(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add_(Tensor other, Number alpha)
[01/14 07:28:25 d2.utils.events]: eta: 0:00:10  iter: 19  total_loss: 1.699  loss_cls: 1.185  loss_box_reg: 0.501  time: 0.5020  data_time: 0.0224  lr: 0.000100  max_mem: 3722M
[01/14 07:28:35 fvcore.common.checkpoint]: Saving checkpoint to ./output/model_final.pth
```

Differential Revision: D19373523

Pulled By: ezyang

fbshipit-source-id: 75756de129645501f43ecc4e3bf8cc0f78c40b90
2020-01-14 11:44:29 -08:00
Edward Yang
5dfcfeebb8 Revert D19298735: Emit warning from deprecated torch function signatures
Test Plan: revert-hammer

Differential Revision:
D19298735

Original commit changeset: 03cb78af1765

fbshipit-source-id: 304a6d4412f53a8fc822d36897c96815432e0f70
2020-01-08 13:04:41 -08:00
Peter Bell
0e5a6700cc Emit warning from deprecated torch function signatures (#31514)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/28430

The unpythonic signatures for functions such as `torch.addcdiv` are already seperated in [`deprecated.yaml`] and the signatures marked as deprecated in `PythonArgParser`. However, nothing was done with this information previously. So, this now emits a warning when the deprecated signatures are used.

One minor complication is that if all arguments are passed as keyword args then there is nothing to differentiate the deprecated overload. This can lead to false warnings being emitted. So, I've also modified `PythonArgParser` to prefer non-deprecated signatures.

[`deprecated.yaml`]: https://github.com/pytorch/pytorch/blob/master/tools/autograd/deprecated.yaml
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31514

Differential Revision: D19298735

Pulled By: ezyang

fbshipit-source-id: 03cb78af17658eaab9d577cd2497c6f413f07647
2020-01-07 10:57:53 -08:00
Gregory Chanan
68e5172382 Support optional float parameters (float?, optional<double>). (#31517)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31517

This is going to be used by upsample (which currently uses magic values to represent optionals).

For now, we just introduce a fake function for testing (torch._test_optional_float(x)).

Test Plan: Imported from OSS

Differential Revision: D19198721

Pulled By: gchanan

fbshipit-source-id: 0a1382fde0927c5d277d02d62bfb31fb574b8c74
2019-12-23 08:33:39 -08:00
Richard Zou
bcb0bb7e0e Remove unnecessary ATen/core/EnableNamedTensor.h (#31117)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117

After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.

I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```

Test Plan: - wait for CI

Differential Revision: D18934952

Pulled By: zou3519

fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
2019-12-12 09:53:07 -08:00
Richard Zou
e05ee4c421 Remove BUILD_NAMEDTENSOR macros (#30894)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894

This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.

Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros

Reasons for not removing the macros:
- potential for feature flagging

Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.

In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.

[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.

[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.

Test Plan: - wait for CI

Differential Revision: D18858543

Pulled By: zou3519

fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
2019-12-10 07:54:05 -08:00
Nathan Goldbaum
9d3402e4cb Add the __torch_function__ API override mechanism (#30730)
Summary:
This is a re-do of https://github.com/pytorch/pytorch/issues/27064, which was reverted (b8792c0438). This was landed at the same time as other work that added new operators to the `torch` namespace so the check for whether the `torch` namespace is exhaustively checked for overridability was triggering test failures.

I've temporarily disabled that check and added an explanatory comment that the check will be re-enabled in a future PR that will be merged during a time when the commit velocity on PyTorch is lower.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30730

Differential Revision: D18813270

Pulled By: ezyang

fbshipit-source-id: 70477c4656dca8fea6e7bc59259555041fcfbf68
2019-12-04 13:19:07 -08:00
Edward Yang
b8792c0438 Revert D18645954: add __torch_function__ API override mechanism
Test Plan: revert-hammer

Differential Revision:
D18645954

Original commit changeset: 54b5e4344d7a

fbshipit-source-id: 4a7aebb483e6b001130d6f384ccc53c5a808ab13
2019-12-04 07:41:47 -08:00
Prasun Anand
d12786b24f add __torch_function__ API override mechanism (#27064)
Summary:
Closes https://github.com/pytorch/pytorch/issues/24015 (see description of that issue for more details).

For a toy example, see the `DiagonalTensor` and `SubDiagonalTensor` class in test/test_overrides.py.

This PR currently contains:

* tests for `__torch_function__` behavior
* modification to `gen_python_functions` and `parse` function signatures and dispatched to correct overloaded argument.

This feature is inspired by and analogous to NumPy's `__array_function__` protocol ([see NumPy Enhancement Proposal 18](https://numpy.org/neps/nep-0018-array-function-protocol.html#trying-array-function-methods-until-the-right-one-works)).

### Benchmarks:
See Nathan's comment below: https://github.com/pytorch/pytorch/pull/27064#issuecomment-554601189
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27064

Differential Revision: D18645954

Pulled By: ezyang

fbshipit-source-id: 54b5e4344d7afdbcf996bb57191b0bdadc7b1767
2019-12-04 05:56:46 -08:00
Richard Zou
caed485873 Turn on BUILD_NAMEDTENSOR permanently (#26060)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060

This PR enables BUILD_NAMEDTENSOR by default. This is done via including
a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`.
In the future, the plan is to get rid of the flag entirely: we can
incrementally delete usages after this PR goes in.

This PR also maintains the namedtensor ci vs regular ci distinction.
`test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified.
TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this
distinction later and send out an announcement about it; devs will be
responsible for named tensor failures after that.

The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we
could quickly prototype named tensor features without worrying about
adding overhead to the framework. The overheads can be categorized as
memory overhead and performance overhead.

Memory overhead: named tensors adds 1 additional word per Tensor. This
is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>`
field. This is not a lot of overhead.

Performance overhead: At all entry points to name inference, we check
if inputs to an op are named. If inputs are not named, we short-circuit
and don't do name inference. These calls should therefore be as
efficient as error-checking code and not take up a lot of time.

My plan is to benchmark a few functions and then post the results in a
comment to this PR.

Test Plan: - [namedtensor ci]

Differential Revision: D17331635

Pulled By: zou3519

fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
2019-09-17 08:25:00 -07:00
Dylan Bespalko
849c32f8e9 Cpu-strided-complex support for binary-ops (#25534)
Summary:
In-tree changes to pytorch to support complex numbers are being submitted here.
Out-of-tree support for complex numbers is here: [pytorch-cpu-strided-complex extension](https://gitlab.com/pytorch-complex/pytorch-cpu-strided-complex)

Note: These changes do not support AVX/SSE operations on complex tensors.
Changes so far:

- [x]  Added complex support of torch.empty.
- [x]  Added complex support of CopyKernels
- [x]  Added complex support of BinaryOp kernels

Once these changes are applied the rest of the kernels are pretty easy.

ezyang
I have fixed the issues in the original [PR: 25373](https://github.com/pytorch/pytorch/pull/25373).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25534

Differential Revision: D17188390

Pulled By: ezyang

fbshipit-source-id: ade9fb00b2caa89b0f66a4de70a662b62db13a8c
2019-09-04 13:20:52 -07:00
Richard Zou
0dcb8755c8 Implement tensor.set_names_, tensor.names setter
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23172

Test Plan:
- [namedtensor ci]

gh-metadata: pytorch pytorch 23172 gh/zou3519/74/head

Imported from OSS

Differential Revision: D16494364

Pulled By: zou3519

fbshipit-source-id: 8d0e26b33346d4eadba30b2e76610f6d7be7c373
2019-07-26 08:50:49 -07:00
Richard Zou
9817d7e16b Implement named inference rule for torch.sum
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23081

Test Plan:
- New tests [namedtensor ci]

Imported from OSS

Differential Revision: D16419174

Pulled By: zou3519

fbshipit-source-id: 8679f77f121664d0398d7f062a53c0fa37482481
2019-07-26 08:50:40 -07:00
Sam Gross
b1b65f34a9 Make PythonArgs::tensor and PythonArgs::scalar faster (#22782)
Summary:
Speeds up the common case where Tensor is a torch.Tensor (not a
subclass). This reduces the number of executed instructions for a
torch.add(tensor1, tensor2) by ~328 (should be ~65 ns faster).

Note that most of the PythonArgs accessors are too large to be inlined.
We should move most of them to the cpp file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22782

Differential Revision: D16223592

Pulled By: colesbury

fbshipit-source-id: cc20f8989944389d5a5e3fab033cdd70d581ffb1
2019-07-12 11:57:29 -07:00
Hong Xu
693871ded3 Rename macros and build options NAMEDTENSOR_ENABLED to BUILD_NAMEDTENSOR (#22360)
Summary:
Currently the build system accepts USE_NAMEDTENSOR from the environment
variable and turns it into NAMEDTENSOR_ENABLED when passing to CMake.
This discrepancy does not seem necessary and complicates the build
system. The naming of this build option is also semantically incorrect
("BUILD_" vis-a-vis "USE_").  This commit eradicate this issue before it
is made into a stable release.

The support of NO_NAMEDTENSOR is also removed, since PyTorch has been
quite inconsistent about "NO_*" build options.

 ---

Note: All environment variables with their names starting with `BUILD_` are currently automatically passed to CMake with no need of an additional wrapper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22360

Differential Revision: D16074509

Pulled By: zou3519

fbshipit-source-id: dc316287e26192118f3c99b945454bc50535b2ae
2019-07-02 11:46:13 -07:00
Roy Li
9c8f9f0ecb Remove many usages of Type (#21941)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21941
ghimport-source-id: f20cca6229daba9eb8652adb3d959266ae081ef1

Test Plan: Imported from OSS

Differential Revision: D15893331

Pulled By: li-roy

fbshipit-source-id: c988b16008ff0e2725a88c6025afd4aabdaca45a
2019-06-30 04:11:28 -07:00
Vitaly Fedyunin
516c7e4456 Adding memory_format to empty and empty_like operators (#20558)
Summary:
Original RFC https://github.com/pytorch/pytorch/issues/19092

To ensure that we are not introducing BC breaking change, empty_like returns contiguous tensor by default.

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nCwh = torch.empty_like(nhwC)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Now we need a way to preserve memory format in `empty_like`

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nhwC, memory_format=torch.preserve_format)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

like_nCwh = torch.empty_like(nCwh, memory_format=torch.preserve_format)
like_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Usage of `torch.preserve_format` allows us to avoid `if` constructs.

We can also generate different memory format outputs

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nCwh, memory_format=torch.channels_last)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

new_nCwh = torch.empty_like(nhwC, memory_format=torch.contiguous_format)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20558

Differential Revision: D15502474

Pulled By: VitalyFedyunin

fbshipit-source-id: 2e120d57eefad6fb8e04b8322c79871392f64331
2019-06-26 11:48:27 -07:00
Lara
7b1ffba3bf ArgumentStash for Scalar arguments (#21931)
Summary:
Scalars are being traced as constants.
This PR is to fix this issue.

The ONNX Graph for Test_Full_op() before and after this change:

def Test_Full_op():
  class Test_Full(nn.Module):
    def forward(self, x):
      return torch.full((3, 4), x, dtype=torch.long)
  model = Test_Full()
  x = torch.tensor(12)
  output = model(x)

Before this change:
graph(%input1 : Long()):
%output1 : Float(3, 4) = onnx::Constant[value=<Tensor>]
return (%output1)

After this change:
graph(%input1 : Long()):
%1 : int[] = onnx::Constant[value= 3 4 [ Variable[CPULongType]{2} ]]
%2 : Tensor = onnx::ConstantOfShape[value={0}]
%output1 : Float(3, 4) = onnx::Add(%2, %input1)
return (%output1)

Similar PR : https://github.com/pytorch/pytorch/pull/12939
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21931

Reviewed By: zrphercule

Differential Revision: D15950066

Pulled By: houseroad

fbshipit-source-id: 3470665d88fa34faa600940ef16b069a06002cd5
2019-06-25 15:22:08 -07:00
Richard Zou
4bc89bd5a6 Implement tensor.select(Dimname,int) (#21795)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21795
ghimport-source-id: d13af6078a47de1d6045cfbb7d278c378fe734fe

Test Plan: Imported from OSS

Differential Revision: D15833457

Pulled By: zou3519

fbshipit-source-id: fa52aff25ce0e12f31da3eef83ea948b4f7a5d9f
2019-06-21 16:16:45 -07:00
Jerry Zhang
081cd3a293 Change AT_CHECK to TORCH_CHECK in python_arg_parser.h
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21887

Differential Revision: D15869483

Pulled By: jerryzh168

fbshipit-source-id: f3d9d73078e7c1c08ec79694105e18084e7f9caf
2019-06-18 10:48:38 -07:00
Jerry Zhang
94f903654c Add qscheme() method (#20608)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20608

Exposing QScheme in python as Python objects like `torch.qscheme.per_tensor_affine` etc.

Reviewed By: zafartahirov

Differential Revision: D15364354

fbshipit-source-id: 4d6a96d67e9ead051cf4a8f934553a8c7232fdb7
2019-06-14 16:29:29 -07:00
Richard Zou
0d6eb209e6 Expose torch.empty(sizes, *, names, ...) to Python (#21648)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21648
ghimport-source-id: 583f155c8ee95967d2f8b9d8df27d94b9e725694

Differential Revision: D15804482

Pulled By: zou3519

fbshipit-source-id: f86520dda479100be2a752e4db8a902167413a83
2019-06-14 11:52:47 -07:00
Zachary DeVito
69aa2b2814 Collapse tracing_state.h into tracer.h (#21563)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21563
ghimport-source-id: de87e5e621da33326a9d2cb8a57d82d355166479

Reviewed By: suo

Differential Revision: D15729499

Pulled By: zdevito

fbshipit-source-id: 17b3e2e71d004f08c4413e80091388ae9ac2df2b
2019-06-09 15:28:29 -07:00
Zachary DeVito
c27cabe2d7 Revert D15719982: Collapse tracing_state.h into tracer.h
Differential Revision:
D15719982

Original commit changeset: 56bb021dd949

fbshipit-source-id: 2eb3e2c9745c35a84ebcc0fc7ac62b5f1fdd6437
2019-06-07 22:20:37 -07:00
Zachary DeVito
8c5f3acfc0 Collapse tracing_state.h into tracer.h (#21513)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21513
ghimport-source-id: 86278929818a8fc65684bd8f2ffac31460772fe9

Reviewed By: jamesr66a

Differential Revision: D15719982

Pulled By: zdevito

fbshipit-source-id: 56bb021dd949668562ea481c5ff0115a9ea2b02e
2019-06-07 20:57:01 -07:00
Brennan Vincent
0a3fb45d3d allow passing Python built-in types as dtypes (#21215)
Summary:
Another simple bit of syntax that NumPy supports and we don't.

Support int, float, and bool.

```python
>>> torch.randn((2,3), dtype=float)
tensor([[-0.1752, -0.3240, -0.6148],
        [ 0.1861,  1.6472,  0.1687]], dtype=torch.float64)
```

A bit confusingly, Python's "float" actually means double, but nothing we can do about that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21215

Differential Revision: D15697012

Pulled By: umanwizard

fbshipit-source-id: 9a38d960a610b8e67023486b0c9265edd3c22246
2019-06-06 13:17:23 -07:00
Edward Yang
c15254d4ab Expunge some more deprecated uses of AT_CHECK.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21194

Differential Revision: D15576898

fbshipit-source-id: f030195f5bffe0027d4081aece57e2852aaf9ecb
2019-06-05 10:25:25 -07:00
Vitaly Fedyunin
5b78a5eadb Memory format support for contiguous and is_contiguous (#20455)
Summary:
#19975 was separated by 2 PRs.

This one:

Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.

At this moment both functions just operate with strides and doesn't store any tensor state.

(Original RFC #19092)

-----

Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).

Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.

1.  `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.

    - Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.

        `x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.

2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.

    - `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.

Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455

Differential Revision: D15341577

Pulled By: VitalyFedyunin

fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d
2019-05-16 07:18:24 -07:00
Brennan Vincent
72bb84c518 Provide a few default args for numpy translation (#20451)
Summary:
Add automatic translations for a few argument names that commonly differ between PyTorch and NumPy.

For now, they are as follows:

* `keepdim` -> `keepdims`
* `dim` -> `axis`
* `input` -> (any of `a`, `x`, `x1`)
* `other` -> `x2`

Basic examples:
```python
>>> t=torch.randn(10,10)
>>> torch.sum(x=t, axis=1)
tensor([ 0.5199, -0.3768,  4.3619, -0.9105,  1.1804,  1.0837, -0.9036,  0.2365,
         1.1171, -0.0999])
```
```python
>>> torch.add(x1=5, x2=6)
tensor(11)
```

The additional overhead is zero when using traditional PyTorch argument names, and a few (usually 1) extra PyDict lookups when using NumPy argument names.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20451

Differential Revision: D15337521

Pulled By: umanwizard

fbshipit-source-id: 7a7d389786f4ccf5c86a14ecb2002c61730c51b5
2019-05-15 10:13:17 -07:00
Edward Yang
97e1f07ffc Replace AT_CHECK with TORCH_CHECK [shard 10/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20436

Reviewed By: jerryzh168

Differential Revision: D15318926

fbshipit-source-id: 71a43070cc50cc174f703ebc595f1d87c6fc1e91
2019-05-15 07:35:37 -07:00
Mikhail Zolotukhin
722eb48ff2 Cleanup includes in torch/csrc/* (#19924)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19924
ghimport-source-id: f7248b16c8e263a7d0ba7975b1fc0b00cb2cf2c0

Differential Revision: D15125018

Pulled By: ZolotukhinM

fbshipit-source-id: 322c7ca53e38ef8b43b5ac5bd747b28bc10379f1
2019-05-06 14:03:18 -07:00
Vitaly Fedyunin
d14abe3aff Add torch.from_file function similar to the Storage.from_file, but returning tensor (#18688)
Summary:
Porting `torch.Storage.from_file(filename, shared, size)` function to `torch.from_file(filename, shared, size, dtype=torch.int)`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18688

Differential Revision: D15012644

Pulled By: VitalyFedyunin

fbshipit-source-id: 3f62ca9e414fad3847fe71b785ff97b5bdc2d2cd
2019-04-24 15:38:56 -07:00
Roy Li
689dd800ed Generate only one Type class per backend (#19295)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19295
ghimport-source-id: 9345110f91f044a449804ddd5116cc9179444a00

Differential Revision: D14948581

Pulled By: li-roy

fbshipit-source-id: a317b03d58d621e8df162918038f7543bfb13ba2
2019-04-21 21:16:14 -07:00