Fixes#149280. Follow up to #147966, but now available for ROCm.
Since hipblaslt does not support HIPBLASLT_MATMUL_DESC_CU_COUNT_TARGET, we instead create a hipStream that has a CU mask applied. We pass this masked stream to hipblaslt instead of pytorch's current stream. We ensure stream ordering between streams using hipEvents and stream synchronization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149466
Approved by: https://github.com/malfet, https://github.com/atalman
## Update using Cutlass 3.x (2025/06/15)
Following @alexsamardzic's advice, I tried out Cutlass 3.x API and it's impressive (rated specs is 419 TFLOPS)
M | N | K | TFLOPS
---|---|---|--------
16|4096|4096|17.56
64|4096|4096|69.63
256|4096|4096|266.57
1024|4096|4096|339.28
4096|4096|4096|388.91
This uses the same SM100 template. The only difference is
- Cluster size is fixed to `<1,1,1>` since sm120 does not have multicast feature
- ~~Tile size is fixed to `<128,128,128>` due to default kernel schedule does not support `<64,128,128>`. I will work a bit on improve perf for small M.~~ Fixed. Use `KernelTmaWarpSpecializedPingpong` when TileShape.M == 64
Perf for small M is still bad since it seems like Cutlass does not support TileShape.M < 64 for this kernel. It's possible to boost perf a bit by using TileShape `<64,64,128>`.
## Original using SM89
I tried using cutlass FP8 row-wise scaled-mm for sm89 on sm120 (5090) and it works. I guess it makes sense because sm120 matmul uses the standard sm80 PTX instructions (`cp.async`+`mma` and friends).
Simple benchmark script
```python
import torch
from torch._inductor.utils import do_bench_using_profiling
N, K = 4096, 4096
for M in [16, 64, 256, 1024, 4096]:
A = torch.randn(M, K, device="cuda").to(torch.float8_e4m3fn)
B = torch.randn(N, K, device="cuda").to(torch.float8_e4m3fn).T
scale_A = torch.ones(M, 1).cuda()
scale_B = torch.ones(1, N).cuda()
out = torch._scaled_mm(A, B, scale_A, scale_B, out_dtype=torch.bfloat16)
out_ref = ((A.float() @ B.float()) * scale_A * scale_B).bfloat16()
torch.testing.assert_close(out, out_ref)
latency_us = do_bench_using_profiling(lambda: torch._scaled_mm(A, B, scale_A, scale_B, out_dtype=torch.bfloat16))
tflops = (2 * M * N * K) / latency_us / 1e9
print(f"{M=}\t{N=}\t{K=}\t{tflops:.2f} TFLOPS")
```
M | N | K | TFLOPS
---|---|---|---
16 | 4096 | 4096 | 25.73 TFLOPS
64 | 4096 | 4096 | 71.84 TFLOPS
256 | 4096 | 4096 | 86.40 TFLOPS
1024 | 4096 | 4096 | 112.12 TFLOPS
4096 | 4096 | 4096 | 121.24 TFLOPS
Accodring to [RTX Blackwell Whitepaper](https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf), FP8 MMA with FP32 accumulate is 419 TFLOPS. So the result is quite bad here...
However, if I change `ThreadblockSwizzle` to `cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>`
M | N | K | TFLOPS
---|---|---|--------
16|4096|4096|27.13 TFLOPS
64|4096|4096|84.84 TFLOPS
256|4096|4096|96.75 TFLOPS
1024|4096|4096|110.21 TFLOPS
4096|4096|4096|122.98 TFLOPS
Small M slightly improves, but large M is still bad.
If I further change `ThreadBlockShape=<128, 64, 128>, WarpShape=<64, 32, 128>, NumStages=3` for M>256, which is taken from [cutlass example 58](https://github.com/NVIDIA/cutlass/blob/v3.9.2/examples/58_ada_fp8_gemm/ada_fp8_gemm.cu), I get the following results
M | N | K | TFLOPS
---|---|---|--------
1024|4096|4096|313.28
4096|4096|4096|376.73
Which is much closer to hardware limit. And it also means this kernel is sufficient to get the most perf out of sm120. Only need better tuned configs.
To make sure this high perf is only obtainable with `GemmIdentityThreadblockSwizzle<1>` + `ThreadBlockShape=<128, 64, 128>, WarpShape=<64, 32, 128>, NumStages=3`, I also try using `ThreadblockSwizzleStreamK` + `ThreadBlockShape=<128, 64, 128>, WarpShape=<64, 32, 128>, NumStages=3`
M | N | K | TFLOPS
---|---|---|--------
1024|4096|4096|144.03
4096|4096|4096|156.86
A bit better than current configs, but still very far away from hardware limit.
@alexsamardzic I noticed you chose this configs in #149978. Do you have any numbers how the current configs perform on sm89?
Update: Using triton codegen-ed from inductor `compiled_scaled_mm = torch.compile(torch._scaled_mm, dynamic=False, mode="max-autotune-no-cudagraphs")`
M | N | K | TFLOPS
---|---|---|--------
16|4096|4096|25.60
64|4096|4096|71.74
256|4096|4096|161.64
1024|4096|4096|185.89
4096|4096|4096|215.53
Better than default configs, but still far away from the config above for compute-bound
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155991
Approved by: https://github.com/drisspg, https://github.com/eqy
1. Enable strided inputs
2. Implement "2d/2d", "3d/2d" and "3d/3d" combinations of inputs
3. Fix non-TMA load variant
4. Replace experimental_device_tensormap_create2d with _experimental_make_tensor_descriptor
5. Fix cases when group size along K dimension is not multiple of block size along K
6. Updated meta registration
7. Update synthetic offsets creation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150944
Approved by: https://github.com/ngimel, https://github.com/davidberard98
1. Enable strided inputs
2. Implement "2d/2d", "3d/2d" and "3d/3d" combinations of inputs
3. Fix non-TMA load variant
4. Replace experimental_device_tensormap_create2d with _experimental_make_tensor_descriptor
5. Fix cases when group size along K dimension is not multiple of block size along K
6. Updated meta registration
7. Update synthetic offsets creation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150944
Approved by: https://github.com/ngimel
Some tests may not set the preferred backend, which leads to unexpected behavior when multiple tests are run vs. standalone
Tests that should exercise both backends should explicitly parametrize this setting
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153655
Approved by: https://github.com/ngimel
cuBLASLt matmuls have been silently allowing all reduction types, which meant that e.g., `allow_fp16_reduced_precision_reduction = False` had no effect.
In practice split-K with reduced precision reductions were unlikely to happen as the default `CUBLASLT_WORKSPACE_SIZE` of 1MiB tends to prevent this.
However this isn't guaranteed and we are on the path to increasing the default workspace size following #151163
This setting is effectively already tested in e.g., `test_cublas_addmm_size_100_cuda_float16` and `test_cublas_addmm_size_100_cuda_bfloat16` but the backend selection is not deterministic. Running the full `test_matmul_cuda.py` seems to exercise the Lt interface, but running a standalone test does not (apparently due to spurious alignment differences).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153095
Approved by: https://github.com/cyyever, https://github.com/Skylion007
Some tests may not set the preferred backend, which leads to unexpected behavior when multiple tests are run vs. standalone
Tests that should exercise both backends should explicitly parametrize this setting
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153655
Approved by: https://github.com/ngimel
Error out if K=0 in one of the grouped gemms to avoid hangs in #152668
Also, adds meta function for _scaled_grouped_mm (TODO: do the same for _grouped_mm, unless it's done already)
One weird thing I'm seeing, when running all grouped_gemm tests, I'm erroring out with
```
File "/data/users/ngimel/pytorch/torch/_inductor/graph.py", line 1246, in call_function
out = lowerings[target](*args, **kwargs) # type: ignore[index]
File "/data/users/ngimel/pytorch/torch/_inductor/lowering.py", line 445, in wrapped
out = decomp_fn(*args, **kwargs)
File "/data/users/ngimel/pytorch/torch/_inductor/kernel/mm_scaled_grouped.py", line 444, in tuned_scaled_grouped_mm
if is_nonzero and can_use_triton_kernel(mat_a, mat_b, offs, bias):
File "/data/users/ngimel/pytorch/torch/_inductor/kernel/mm_scaled_grouped.py", line 375, in can_use_triton_kernel
offs is not None
File "/home/ngimel/.conda/envs/pytorch_monarch/lib/python3.10/site-packages/sympy/core/relational.py", line 516, in __bool__
raise TypeError("cannot determine truth value of Relational")
torch._inductor.exc.InductorError: LoweringException: TypeError: cannot determine truth value of Relational
```
which is weird, there's no relational that sympy has to evaluate in `offs is not None`, and when running this test separately (`test_scaled_grouped_gemm_2d_3d_fast_accum_True_strided_False_use_torch_compile_True_cuda`) it passes. I suspect some autotuning cache has to be reset between runs, but don't know what to look for.
Edit: that error is "fixed" by setting `dynamic=False`, now with correct meat function something's wrong with dynamic shapes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153226
Approved by: https://github.com/kwen2501
Finishes up the work started in #121686 + adds test
Update: this was not as straightforward as I originally imagined. Context below.
**TL;DR:** `TestFoo{CPU, CUDA}` now actually derive from `TestFoo`! Also, `{CPU, CUDA}TestBase` setup / teardown logic is now always called (it is required to set the primary device), regardless of whether `super().setUpClass()` / `super().tearDownClass()` are called or not.
**Background:** The typical way to get device-specific tests is to write a generic `TestFoo` and call `instantiate_device_type_tests(TestFoo, locals())` to get `TestFooCPU`, `TestFooCUDA`, etc. After this, generic tests (e.g. `TestFoo.test_bar()`) become `TestFooCPU.test_bar_cpu()` / `TestFooCUDA.test_bar_cuda()`.
Behind the scenes, this was historically accomplished by creating a `TestFooCUDA` that derives from both a `CUDATestBase` and an *empty class* called `TestFoo_base`. This `TestFoo_base` has the same bases as `TestFoo`, but none of the test functions (e.g. `test_bar()`). The documented reason for this is to avoid things like a derived `TestFooCUDA.test_bar()` being discovered in addition to the real device-specific test `TestFooCUDA.test_bar_cuda()`.
(1) A reason this matters is because it should be possible to call e.g. `super().setUpClass()` from a custom setup / teardown classmethod. If the generated TestFooCUDA does not derive from TestFoo, but instead derives from the empty class described above, this syntax does not work; in fact there is no way to form a proper `super()` call that works across the device-specific test variants. Here's an example that breaks in the OpInfo tests:
070f389745/test/test_ops.py (L218-L221)
(2) Further, there is some precedent within a custom `setUpClass()` impl for storing things on the `cls` object to be accessed at test time. This must be the device-specific test class (`TestFooCUDA`) and not `TestFoo` for this to work. As an example, the open device registration tests load a module during setup and use it in the test logic:
070f389745/test/test_cpp_extensions_open_device_registration.py (L63-L77)070f389745/test/test_cpp_extensions_open_device_registration.py (L79-L80)
To accomplish both (1) and (2) at the same time, I decided to revisit the idea of utilizing a proper inheritance hierarchy for `TestFoo` -> `{TestFooCPU, TestFooCUDA}`. That is: have TestFooCPU / TestFooCUDA **actually** derive from `TestFoo`. This achieves both (1) and (2). The only thing left is to make sure the generic tests (e.g. `TestFoo.test_bar()`) are not discoverable, as was the stated reason for diverging from this in the first place. It turns out we can simply `delattr()` these generic tests from `TestFoo` once `TestFooCPU` / `TestFooCUDA` have been setup with the device-specific variants, and all works well. The `instantiate_device_type_tests(...)` logic already deletes `TestFoo` from scope, so I don't see a problem with deleting generic tests from this base class as well (CI will prove me right or wrong ofc).
**Side note:** I was encountering a weird race condition where sometimes the custom `setUpClass()` / `tearDownClass()` defined & swapped in [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L940-L955)) would be used, and sometimes it wouldn't. This non-deterministic behavior was called out previously by @ngimel here:
4a47dd9b3f/test/inductor/test_torchinductor_dynamic_shapes.py (L128-L130)
To address this, I moved this block of logic to before the first call to `instantiate_test()`, as that method queries for the primary device, and the primary device identification logic may manually invoke `setUpClass()` (see [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L381-L384))). Goal: define the `setUpClass()` / `tearDownClass()` we want for correctness before they're ever called. This seems to work and the behavior is deterministic now AFAICT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151129
Approved by: https://github.com/janeyx99, https://github.com/masnesral, https://github.com/malfet
Finishes up the work started in #121686 + adds test
Update: this was not as straightforward as I originally imagined. Context below.
**TL;DR:** `TestFoo{CPU, CUDA}` now actually derive from `TestFoo`! Also, `{CPU, CUDA}TestBase` setup / teardown logic is now always called (it is required to set the primary device), regardless of whether `super().setUpClass()` / `super().tearDownClass()` are called or not.
**Background:** The typical way to get device-specific tests is to write a generic `TestFoo` and call `instantiate_device_type_tests(TestFoo, locals())` to get `TestFooCPU`, `TestFooCUDA`, etc. After this, generic tests (e.g. `TestFoo.test_bar()`) become `TestFooCPU.test_bar_cpu()` / `TestFooCUDA.test_bar_cuda()`.
Behind the scenes, this was historically accomplished by creating a `TestFooCUDA` that derives from both a `CUDATestBase` and an *empty class* called `TestFoo_base`. This `TestFoo_base` has the same bases as `TestFoo`, but none of the test functions (e.g. `test_bar()`). The documented reason for this is to avoid things like a derived `TestFooCUDA.test_bar()` being discovered in addition to the real device-specific test `TestFooCUDA.test_bar_cuda()`.
(1) A reason this matters is because it should be possible to call e.g. `super().setUpClass()` from a custom setup / teardown classmethod. If the generated TestFooCUDA does not derive from TestFoo, but instead derives from the empty class described above, this syntax does not work; in fact there is no way to form a proper `super()` call that works across the device-specific test variants. Here's an example that breaks in the OpInfo tests:
070f389745/test/test_ops.py (L218-L221)
(2) Further, there is some precedent within a custom `setUpClass()` impl for storing things on the `cls` object to be accessed at test time. This must be the device-specific test class (`TestFooCUDA`) and not `TestFoo` for this to work. As an example, the open device registration tests load a module during setup and use it in the test logic:
070f389745/test/test_cpp_extensions_open_device_registration.py (L63-L77)070f389745/test/test_cpp_extensions_open_device_registration.py (L79-L80)
To accomplish both (1) and (2) at the same time, I decided to revisit the idea of utilizing a proper inheritance hierarchy for `TestFoo` -> `{TestFooCPU, TestFooCUDA}`. That is: have TestFooCPU / TestFooCUDA **actually** derive from `TestFoo`. This achieves both (1) and (2). The only thing left is to make sure the generic tests (e.g. `TestFoo.test_bar()`) are not discoverable, as was the stated reason for diverging from this in the first place. It turns out we can simply `delattr()` these generic tests from `TestFoo` once `TestFooCPU` / `TestFooCUDA` have been setup with the device-specific variants, and all works well. The `instantiate_device_type_tests(...)` logic already deletes `TestFoo` from scope, so I don't see a problem with deleting generic tests from this base class as well (CI will prove me right or wrong ofc).
**Side note:** I was encountering a weird race condition where sometimes the custom `setUpClass()` / `tearDownClass()` defined & swapped in [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L940-L955)) would be used, and sometimes it wouldn't. This non-deterministic behavior was called out previously by @ngimel here:
4a47dd9b3f/test/inductor/test_torchinductor_dynamic_shapes.py (L128-L130)
To address this, I moved this block of logic to before the first call to `instantiate_test()`, as that method queries for the primary device, and the primary device identification logic may manually invoke `setUpClass()` (see [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L381-L384))). Goal: define the `setUpClass()` / `tearDownClass()` we want for correctness before they're ever called. This seems to work and the behavior is deterministic now AFAICT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151129
Approved by: https://github.com/janeyx99, https://github.com/masnesral, https://github.com/malfet
This PR is the duplicated one for https://github.com/pytorch/pytorch/pull/139975.
This PR is to add torch._scaled_mm for CPU backend.
_scaled_mm_out_cpu and _scaled_mm_cpu are new added and included in torch._scaled_mm CPU dispatch. We also add _scaled_mm_out_cpu_emulated as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150410
Approved by: https://github.com/atalman
Enabled bf16 grouped gemm with an API similar to _scaled_group_gemm, except without scale and fast accum arguments. All transpose variants are enabled, unlike scaled gemm. Ideally we'd factor out a lot more code from scaled gemm, currently there's a lot of repetition between scaled and non-scaled versions. I factored out only a helper kernel that prepares arguments.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150374
Approved by: https://github.com/drisspg
This PR is the duplicated one for https://github.com/pytorch/pytorch/pull/139975.
This PR is to add torch._scaled_mm for CPU backend.
_scaled_mm_out_cpu and _scaled_mm_cpu are new added and included in torch._scaled_mm CPU dispatch. We also add _scaled_mm_out_cpu_emulated as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150410
Approved by: https://github.com/atalman
Summary:
Updates the meta registration for `torch._scaled_mm` to work for the
nvfp4 recipe.
Test Plan:
```bash
pytest test/test_matmul_cuda.py -s -k test_blockwise_nvfp4
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150462
Approved by: https://github.com/eellison
Summary:
When `a` and `b` have dtype `torch.float4_e2m1fn_x2` and `a_scale` and `b_scale` have dtype `torch.float8_e4m3fn`, makes
```python
c = torch._scaled_mm(a, b, a_scale, b_scale, out_dtype=torch.bfloat16)
```
call the cuBLAS fp4 gemm kernel, as specified in https://docs.nvidia.com/cuda/cublas/index.html?highlight=fp4#d-block-scaling-for-fp8-and-fp4-data-types
note: output scale (`scale_in_D` from the cuBLAS docs) is not tested in this PR - we can enable in a follow-up.
Test Plan:
```bash
pytest test/test_matmul_cuda.py -s -k mxfp8_nvfp4
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148792
Approved by: https://github.com/eqy
ghstack dependencies: #148791
Summary:
Adds the meta registration logic for torch.compile to work with
`torch._scaled_mm` with mxfp8. Thanks to @eellison for the pointer to make inductor work with this.
Test Plan:
```
pytest test/test_matmul_cuda.py -k test_blockwise_mxfp8_compile -s
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148461
Approved by: https://github.com/drisspg, https://github.com/eellison
This PR provides initial cutlass implementation of grouped gemm api as described in this [document](https://docs.google.com/document/d/1985La6wUUVH1AGBkNhaGKUXzx-9ybtbUp567-vYVOM4/edit?tab=t.0#heading=h.g8lzbjnyzzx9). Any combination of 2d and 3d inputs is supported, with 2d input being jagged, and the offsets of the jagged input being given by device tensor `offs`. Only H100 is supported, and only fp8_e4m3 with bf16 output and rowwise scaling. All the dimensions of each individual gemm have to be multiple of 16, that's cutlass limitation.
I'll need to add those checks, for dynamic dimensions unfortunately the checks will have to be a device assert.
I had to copy-paste cutlass's `Sm90RowBroadcast` and `Sm90ColBroadcast` structs with minor changes to enable scales given as pointer arrays, ideally those should be part of cutlass itself.
I copied the schedules from the similar grouped gemm in FBGEMM, but there's a lot of room to improve perf, especially for `fast_accum=False`.
Next steps would be perf tuning and increasing coverage to B100, I don't know how cutlass grouped gemm example handles blockwise scaling on B100.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148531
Approved by: https://github.com/drisspg
This PR provides initial cutlass implementation of grouped gemm api as described in this [document](https://docs.google.com/document/d/1985La6wUUVH1AGBkNhaGKUXzx-9ybtbUp567-vYVOM4/edit?tab=t.0#heading=h.g8lzbjnyzzx9). Any combination of 2d and 3d inputs is supported, with 2d input being jagged, and the offsets of the jagged input being given by device tensor `offs`. Only H100 is supported, and only fp8_e4m3 with bf16 output and rowwise scaling. All the dimensions of each individual gemm have to be multiple of 16, that's cutlass limitation.
I'll need to add those checks, for dynamic dimensions unfortunately the checks will have to be a device assert.
I had to copy-paste cutlass's `Sm90RowBroadcast` and `Sm90ColBroadcast` structs with minor changes to enable scales given as pointer arrays, ideally those should be part of cutlass itself.
I copied the schedules from the similar grouped gemm in FBGEMM, but there's a lot of room to improve perf, especially for `fast_accum=False`.
Next steps would be perf tuning and increasing coverage to B100, I don't know how cutlass grouped gemm example handles blockwise scaling on B100.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148531
Approved by: https://github.com/drisspg
# summary
Add blockwise MXFP8 support to `torch._scaled_mm` on CUDA capability 10.0 and higher devices. If the scales for A and B are of dtype `torch.float8_e8m0fnu`, we dispatch to the blockwise kernel from cuBLAS.
This is a skeleton PR where we test basic functionality (numerics of various simple matrices, as well as one end to end quantization + gemm).
- Scales are flipped based on transpose_result
- Handles boundary conditions
Note that MXFP4 is not added in this PR - we can tackle that in a future PR.
This PR was created by taking https://github.com/pytorch/pytorch/pull/145562, switching e8m0 to in-core dtype, removing fp4 for now, and adding test cases.
# test plan
```
pytest test/test_matmul_cuda.py -k blockwise_mxfp8 -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147548
Approved by: https://github.com/drisspg
Co-authored-by: drisspg <drisspguessous@gmail.com>
Resubmission of #144974 which was reverted for unrelated reasons.
Newer matmul kernels, e.g. those targeting Hopper GPUs, sometime use a "persistent" schedule which consists in launching as many CUDA blocks as there are SMs on the GPU, with each such block then working on multiple output tiles in a row. This allows to eliminate the overhead of starting and finishing each tile, effectively doing cross-tile pipelining. In previous generations these latencies could be hidden by having multiple CUDA blocks per SM but, with blocks becoming larger, only one can run at a time per SM and thus this needs to be taken care of in software.
Persistent kernels become an issue when other kernels are running concurrently. The classical example is a NCCL communication kernel running in the background. In such cases the matmul expects to be able to use all the SMs but is prevented from doing so because some of the are busy. This can lead to its blocks being scheduled as two separate waves on the available SMs. This "wave quantization" can double the latency of the matmul kernels.
While we wait for smarter solutions, such as automatic load balancing among the blocks, an easy way to unblock ourselves is to tell the matmuls to only use a subset of the GPU's SMs. For this, I am introducing a global `sm_carveout` flag which can be used to specify how many SMs should be left available for other kernels.
For now I only change the cuBLAS kernels and the scaled-mm CUTLASS kernel. More kernels can be opted-in later.
I tested this change manually, by using the Kineto profiler to look up the grid size of a scaled-mm kernel with different values of `sm_carveout`, and making sure it changed. Suggestions are welcome for a more automated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147966
Approved by: https://github.com/danthe3rd
# summary
Add blockwise MXFP8 support to `torch._scaled_mm` on CUDA capability 10.0 and higher devices. If the scales for A and B are of dtype `torch.float8_e8m0fnu`, we dispatch to the blockwise kernel from cuBLAS.
This is a skeleton PR where we test basic functionality (numerics of various simple matrices, as well as one end to end quantization + gemm).
- Scales are flipped based on transpose_result
- Handles boundary conditions
Note that MXFP4 is not added in this PR - we can tackle that in a future PR.
This PR was created by taking https://github.com/pytorch/pytorch/pull/145562, switching e8m0 to in-core dtype, removing fp4 for now, and adding test cases.
# test plan
```
pytest test/test_matmul_cuda.py -k blockwise_mxfp8 -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147548
Approved by: https://github.com/drisspg
Co-authored-by: drisspg <drisspguessous@gmail.com>
Newer matmul kernels, e.g. those targeting Hopper GPUs, sometime use a "persistent" schedule which consists in launching as many CUDA blocks as there are SMs on the GPU, with each such block then working on multiple output tiles in a row. This allows to eliminate the overhead of starting and finishing each tile, effectively doing cross-tile pipelining. In previous generations these latencies could be hidden by having multiple CUDA blocks per SM but, with blocks becoming larger, only one can run at a time per SM and thus this needs to be taken care of in software.
Persistent kernels become an issue when other kernels are running concurrently. The classical example is a NCCL communication kernel running in the background. In such cases the matmul expects to be able to use all the SMs but is prevented from doing so because some of the are busy. This can lead to its blocks being scheduled as two separate waves on the available SMs. This "wave quantization" can double the latency of the matmul kernels.
While we wait for smarter solutions, such as automatic load balancing among the blocks, an easy way to unblock ourselves is to tell the matmuls to only use a subset of the GPU's SMs. For this, I am introducing a global `sm_carveout` flag which can be used to specify how many SMs should be left available for other kernels.
For now I only change the cuBLAS kernels and the scaled-mm CUTLASS kernel. More kernels can be opted-in later.
I tested this change manually, by using the Kineto profiler to look up the grid size of a scaled-mm kernel with different values of `sm_carveout`, and making sure it changed. Suggestions are welcome for a more automated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144974
Approved by: https://github.com/eqy, https://github.com/albanD
# summary
Add blockwise MXFP8 support to `torch._scaled_mm` on CUDA capability 10.0 and higher devices. If the scales for A and B are of dtype `torch.float8_e8m0fnu`, we dispatch to the blockwise kernel from cuBLAS.
This is a skeleton PR where we test basic functionality (numerics of various simple matrices, as well as one end to end quantization + gemm).
- Scales are flipped based on transpose_result
- Handles boundary conditions
Note that MXFP4 is not added in this PR - we can tackle that in a future PR.
This PR was created by taking https://github.com/pytorch/pytorch/pull/145562, switching e8m0 to in-core dtype, removing fp4 for now, and adding test cases.
# test plan
```
pytest test/test_matmul_cuda.py -k blockwise_mxfp8 -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147548
Approved by: https://github.com/drisspg
Co-authored-by: drisspg <drisspguessous@gmail.com>
TLDR: Follow up/ Build on top of https://github.com/pytorch/pytorch/pull/144476. add OCP FP8 support for gfx950
refer to https://github.com/pytorch/ao/pull/1677
This pull request includes several changes to improve compatibility and support for new GPU architectures and data types, particularly for ROCm. The key updates involve adding support for new ROCm versions and GPU architectures, updating data type handling, and removing outdated checks.
### Improvements to GPU Architecture and ROCm Version Support:
* [`aten/src/ATen/Context.cpp`](diffhunk://#diff-33de472d304acbe57d693c8567370c638068bedc1aa0ce8e9dc115dad05a7810L323-R326): Added support for new GPU architectures `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks.
* [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199): Updated architecture support in multiple functions to include `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL865-R876)
### Updates to Data Type Handling:
* [`aten/src/ATen/cuda/CUDADataType.h`](diffhunk://#diff-9188bb13b1a49f459141f5f9b875593d1c5ce2beb5ad711fdbaf5bc7089ec015L81-L98): Enhanced data type conversion to include new float8 types for both CUDA and ROCm environments.
* [`aten/src/ATen/cuda/tunable/GemmHipblaslt.h`](diffhunk://#diff-bfa1a3b5d4bef1892bf50338775f3b0fd8cd31fc1868148f3968b98aefb68e3fL29-R80): Updated `HipDataTypeFor` template to handle new float8 types and added hard-coded enum values for ROCm versions prior to 6.3.
### Removal of Outdated Checks:
* [`cmake/public/LoadHIP.cmake`](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197): Removed the check for `HIP_NEW_TYPE_ENUMS` as it is no longer necessary with the updated ROCm versions. [[1]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197) [[2]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L211-R182)
These changes ensure better compatibility and performance on newer hardware and software environments, particularly for users leveraging ROCm and CUDA for deep learning and scientific computing tasks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146632
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>