Add a mode to fx_codegen_and_compile() to compile in a separate process. This is to prepare for async compile where we'll compile and run eager in parallel (and also be able to move the compile phase to a remote computer).
Added a test based which runs the test_torchinductor tests with subprocess compiling turned on.
Fixed the test which caused the previous version (#146134) to be reverted:
```
$ PYTORCH_TEST_WITH_ROCM=1 PYTORCH_TEST_WITH_SLOW=1 PYTORCH_TEST_SKIP_FAST=1 python test/inductor/test_compile_subprocess.py CpuTests.test_conv_bn_fuse_cpu
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148635
Approved by: https://github.com/jamesjwu
Add a mode to `fx_codegen_and_compile()` to compile in a separate process. This is to prepare for async compile where we'll compile and run eager in parallel (and also be able to move the compile phase to a remote computer).
Added a test based which runs the test_torchinductor tests with subprocess compiling turned on.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146134
Approved by: https://github.com/jamesjwu
Previously, parametrized tests with class arguments, for example
```
@parametrize("this_cls", (Foo, Bar))
```
would create parametrized tests with names `test_foo_this_cls0` and `test_foo_this_cls1`. With this change, we instead should get `test_foo_this_cls_Foo` and `test_foo_this_cls_Bar`
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133546
Approved by: https://github.com/eellison
This PR
* makes changes to the workflow files and scripts so we can run CI workflows on the MI300 runners
* skips and fixes several tests, failed on MI300, observed in https://github.com/pytorch/pytorch/pull/140989
Skipped due to unsupported Float8_e4m3fn data type on MI300 (need to update test code to use datatypes supported by MI300):
- distributed.tensor.parallel.test_micro_pipeline_tp.py::MicroPipelineTPTest::test_fuse_all_gather_scaled_matmul_A_dims_\*_gather_dim_\* (24 tests across inductor/distributed configs)
- distributed.tensor.parallel.test_micro_pipeline_tp.py::test_fuse_scaled_matmul_reduce_scatter_A_dims_\*_scatter_dim_\* (12 tests across inductor/distributed configs))
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_cast_and_t
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_pattern_2
Skipped due to AssertionError on MI300:
- inductor.test_mkldnn_pattern_matcher.py::test_qconv2d_int8_mixed_bf16
- distributed._tools.test_sac_ilp::TestSACILP::test_sac_ilp_case1
Skipped:
- test_cuda.py::TestCudaMallocAsync::test_clock_speed
- test_cuda.py::TestCudaMallocAsync::test_power_draw
- test_torch.py::TestTorchDeviceTypeCUDA::test_deterministic_cumsum_cuda
Skipped flaky tests on MI300:
- distributed.test_c10d_gloo.py::ProcessGroupGlooTest::test_gather_stress_cuda
- inductor.test_cpu_repro::CPUReproTests::test_lstm_packed_unbatched_False* (256 tests)
Fixed:
- test_matmul_cuda.py::TestFP8MatmulCudaCUDA::test_float8_basics_cuda
Features:
- inductor/test_fp8.py - declare a new function to convert FP8 datatypes to ROCm supported FP8 datatypes. It keeps test names for CUDA and ROCm and allows to enable Inductor FP8 tests on CPU
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143673
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/pruthvistony
Co-authored-by: saienduri <saimanas.enduri@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
See #144006
```py
__________________________________________ CudaReproTests.test_repeated_masked_load __________________________________________
RuntimeError: First class dim doesn't work with python 3.12
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/jansel/conda/envs/pytorch/lib/python3.12/unittest/case.py", line 58, in testPartExecutor
yield
File "/home/jansel/conda/envs/pytorch/lib/python3.12/unittest/case.py", line 634, in run
self._callTestMethod(testMethod)
File "/home/jansel/conda/envs/pytorch/lib/python3.12/unittest/case.py", line 589, in _callTestMethod
if method() is not None:
^^^^^^^^
File "/home/jansel/pytorch/torch/testing/_internal/common_utils.py", line 3108, in wrapper
method(*args, **kwargs)
File "/home/jansel/pytorch/test/inductor/test_cuda_repro.py", line 1678, in test_repeated_masked_load
from functorch.einops import rearrange
File "/home/jansel/pytorch/functorch/einops/__init__.py", line 1, in <module>
from .rearrange import rearrange
File "/home/jansel/pytorch/functorch/einops/rearrange.py", line 7, in <module>
from functorch._C import dim as _C
ImportError: initialization failed
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144006
Approved by: https://github.com/Skylion007
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes:
1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
There are a number of cases where pattern matching differs based on the presence of ACL, causing the tests to fail. This adds `TEST_ACL` and `skipIfACL` so that these tests can still run with different values or be entirely skipped if necessary.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141921
Approved by: https://github.com/malfet
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
# Motivation
This PR enables the XPU quantized convolution. The operators it registers are `onednn::qconv_prepack`, `onednn::qconv1d_pointwise`, `onednn::qconv2d_pointwise`, `onednn::qconv3d_pointwise`. We share same operator schemas as Intel CPU backend as both would call kernels implemented in oneDNN library.
# Details
The implemented operators would be further integrated into pt2e quant flow. In this PR, we validated the kernel functionality via the UT in `test/inductor/test_mkldnn_pattern_matcher.py` where CPU backend defines a series of UT for quantized convolution. Also, we extend the device support for inductor lowering pass and inductor IR defined in `torch/_inductor/fx_passes/quantization.py` and `torch/_inductor/mkldnn_ir.py`. The overall picture would be that, CPU and GPU backend could share the general optimization pass(op fusion) and quantization inductor IR. After lowering, the final kernel would be dispatched to different implementation in oneDNN library.
In this PR, we share the same int8 quantizer in CPU, namely, `X68InductorQuantizer`. In next PR #139578, we will append a `XPUIndcutorQuantizer` which will customized the pt2e behaviors at XPU backend. The capability of `XPUInductorQuantizer` would gradually grow along with the development of quantized operators in XPU.
# Validation
* UT testing
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qconv2d_xpu \
-k test_qconv2d_silu_xpu \
-k test_qconv2d_relu6_xpu \
-k test_qconv2d_hardtanh_xpu \
-k test_qconv2d_hardswish_xpu
```
* Runtime exemplification
```bash
#qconv2d
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_u8::blocked:acdb::f0 wei_s8::blocked:acdb::f0 bia_undef::undef::: dst_f32::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+wei:1:f32 attr-zero-points:src0:0:s32 attr-post-ops:binary_add:f32:2+eltwise_linear:1,alg:convolution_direct,mb1_ic128oc128_ih6oh4kh3sh1dh0ph0_iw6ow4kw3sw1dw0pw0,0.0668945
#qconv2d_silu
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_u8::blocked:acdb::f0 wei_s8::blocked:acdb::f0 bia_undef::undef::: dst_u8::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+wei:1:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_swish:1+binary_add:f32:2+eltwise_linear:0.0124779:22,alg:convolution_direct,mb1_ic3oc128_ih8oh6kh3sh1dh0ph0_iw8ow6kw3sw1dw0pw0,0.0881348
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133080
Approved by: https://github.com/guangyey, https://github.com/EikanWang, https://github.com/atalman
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
### Background
This PR adds the functionality to xfail / skip on a per-`SampleInput` basis for `OpInfo` tests. See #89354 and #82669 for some requests asking for this type of functionality.
This was originally landed for NJT in #138370 and is generalized and slightly tweaked here.
### Design
#### Principles
* Clean separation among `SampleInput` generation logic, test logic that uses the `SampleInput`s, and xfail / skip logic (which will change as bugs are addressed).
* Flexibility in xfail / skip predicate specification - ideally each bug can be handled by a single skip / xfail, even if it surfaces across a specific class of ops.
* This is important in practice for NJT, where it's common to have a bug that affects all binary ops, for example.
* Opt-in with minimal test logic changes + no substantial impact on other tests.
#### Details
The core new concept is a `SampleRule`, which can be either an `XFailRule` or `SkipRule`.
```python
@dataclass
class SampleRule(ABC):
# function to indicate whether the rule applies to this op; return True if so
# NB: str arg of callable is device_type
op_match_fn: Callable[[str, OpInfo], bool] = None
# function to indicate whether the rule applies to this sample; return True if so
sample_match_fn: Callable[[torch.device, SampleInput], bool] = None
# optional name for identifying the rule
name: str = ""
@dataclass
class XFailRule(SampleRule):
# expected error type
error_type: TypeVar = Exception
# expected error message
error_msg: str = ".*"
@dataclass
class SkipRule(SampleRule):
...
```
* See below for example usage details, but at a high level: each test should have a corresponding list of `sample_skips_and_xfails`.
* The list of `sample_skips_and_xfails` is traversed in order, and the first rule that matches (if any) is applied, so order can matter.
* The PR includes a logging mechanism for matched rules accessible by setting the loglevel to `DEBUG`.
* The split between `op_match_fn` and `sample_match_fn` is made to allow pre-filtering of the list of rules to get only those that apply to the op under test.
* Each `SampleInput` is run within a subtest context so they can be individually skipped / xfailed as needed. This also means that a test will no longer stop after the first erroring `SampleInput`; all samples will be run through test logic.
### Example Usage
Consider the following OpInfo test:
```python
class MyTestCase(TestCase):
@ops(op_db)
def test_foo(self, device, dtype, op):
for sample in op.sample_inputs(device, dtype, requires_grad=False):
# do some SampleInput-based test logic
output = op.op(sample.input, *sample.args, **sample.kwargs)
...
```
This is a common pattern for such tests; simply generate a list of `SampleInputs` and run them through the op. Now say you want to xfail one of these `SampleInput`s for a given op. Today, you have to xfail the entire test or hack around this in the test logic.
This PR lets you do this to get very flexible xfail / skips based on op / sample input properties:
```python
# NB: Define rules for per-SampleInput xfails / skips. These can also be defined in-line in the @ops decorator, but
# it can be more readable to maintain these somewhere else. These are attempted to be matched in order and
# the first one that matches applies, so order can matter.
FOO_SKIPS_AND_XFAILS = [
XFailRule(
error_type=ValueError,
error_mg="2D inputs not supported",
op_match_fn=lambda device, op: (
# NB: logic for which ops this rule applies to goes here
op.full_name == "add"
),
sample_match_fn=lambda device, sample: (
# NB: logic which samples this rule applies to goes here
sample.input.dim() == 2
),
# NB: optional rule identifier can help with debugging matched rules
name="add_with_2D_inputs_not_supported",
),
# NB: This follows a similar structure as XFailRule but without error_type / error_msg. Obviously
# this skips a particular SampleInput instead of xfailing :)
SkipRule(...),
...
]
class MyTestCase(TestCase):
@ops(op_db)
@sample_skips_and_xfails(FOO_SKIPS_AND_XFAILS)
# NB: the @ops decorator automatically filters out any rules that don't apply to this op
def test_foo(self, device, dtype, op):
for sample, subtest_ctx in op.sample_inputs(
# NB: use_subtests=True is required for skips / xfails to work. If skips / xfails are defined and use_subtests != True,
# an informative error will be thrown.
device, dtype, requires_grad=False, use_subtests=True
):
# NB: this subtest context manager runs each sample input as a "subtest" and handles skips / xfails appropriately
with subtest_ctx(self):
# do some SampleInput-based test logic
output = op.op(sample.input, *sample.args, **sample.kwargs)
...
```
More examples can be seen in `test/test_nestedtensor.py`, where this system is used in practice.
I also demonstrate usage of syntactic sugar over this system in `test/functorch/test_vmap.py`. Here, a skip for the `to()` operator is replaced with a granular xfail for `test_vmap_exhaustive()`:
```python
...
# pre-existing xfail
xfail("item"),
# new granular xfail using syntactic sugar over the general system
xfailIf(
"to",
lambda sample: (
sample.kwargs["memory_format"] == torch.channels_last
),
),
...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140443
Approved by: https://github.com/janeyx99, https://github.com/zou3519
ghstack dependencies: #140160, #138370
Per discussion with @malfet, only allow weights_only unpickler to load NJT if `torch.nested` and `torch._dynamo` are imported
(this is slightly weird as technically `torch.nested` is actually imported by default and `torch._dynamo.decorators._DimRange` is actually what needs to be imported)
we can't import this from `torch.nested` as this would
- undo dynamo lazy import
- cause circular import
===========================
Redo of https://github.com/pytorch/pytorch/pull/140304 caused issues as `torch.nested._internal.foo` needs to be imported, which causes issues like
```python
torch/_weights_only_unpickler.py", line 339, in load
if full_path in _get_allowed_globals():
torch/_weights_only_unpickler.py", line 188, in _get_allowed_globals
torch.nested._internal.nested_tensor.NestedTensor
AttributeError: module 'torch.nested' has no attribute '_internal'
```
**This likely wasn't caught in our CI because imports are global during unit tests(?), so we use subprocess to properly test this time**
Differential Revision: [D65961691](https://our.internmc.facebook.com/intern/diff/D65961691)
@jbschlosser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140739
Approved by: https://github.com/malfet