Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29529
Pull Request resolved: https://github.com/pytorch/glow/pull/3771
We would like to replace `conv_prepack` with `conv2d_prepack` and `conv_unpack` with `conv2d_unpack`.
This makes the naming consistent between 2D and 3D conv:
```
torch.ops.quantized.conv2d_prepack
torch.ops.quantized.conv2d_unpack
torch.ops.quantized.conv2d
torch.ops.quantized.conv3d_prepack
torch.ops.quantized.conv3d_unpack
torch.ops.quantized.conv3d
```
We should do this earlier rather than later when we have more users for the quantized conv2d ops, for better engineering.
The replacement bash command is as the follows:
```
find ./ -type f -exec sed -i -e 's/quantized::conv_prepack/quantized::conv2d_prepack/g' {} \;
find ./ -type f -exec sed -i -e 's/quantized::conv_unpack/quantized::conv2d_unpack/g' {} \;
find ./ -type f -exec sed -i -e 's/torch.ops.quantized.conv_prepack/torch.ops.quantized.conv2d_prepack/g' {} \;
find ./ -type f -exec sed -i -e 's/torch.ops.quantized.conv_unpack/torch.ops.quantized.conv2d_unpack/g' {} \;
```
ghstack-source-id: 93661879
Test Plan: CI
Reviewed By: jackm321
Differential Revision: D18421079
fbshipit-source-id: 17ae8b1ee79223bd2c5d4bbccd57af6580c4ab12
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26992
Run the same test for FBGEMM and QNNPACK backends.
Checks that QNNPACK or FBGEMM are supported before running it (using supported_qengines)
Test Plan:
python test/test_quantized.py TestQuantizedLinear
python test/test_quantized.py TestQuantizedConv
python test/test_quantized_models.py
python test/test_quantized_nn_mods.py
Imported from OSS
Differential Revision: D17689171
fbshipit-source-id: e11c0a5e41f5f4e6836a614a5b61e4db3c5e384b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26516
ghstack-source-id: 90982010
Test Plan:
Integrate per-channel support into conv and linear modules.
The following tests pass:
buck test caffe2/test:quantized -- 'test_linear_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details
buck test caffe2/test:quantized -- 'test_conv_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details
buck test caffe2/test:quantized -- 'test_float_quant_compare_per_channel \(test_quantized_models\.ModelNumerics\)' --print-passing-details
Differential Revision: D17342622
fbshipit-source-id: f0d618928e3d9348672c589a6b7a47049c372a2e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26782
At least we should be consistent on top-level APIs and prepare/convert/etc.
Logic is inplace=False by default but top-level APIs take care of doing fewer copies.
Also renames always-inplace methods like add_observer to have underscore in the end.
One fix for MinMaxObserver was triggered by deepcopy surfacing that we were accidentally keeping autograd around
Test Plan: Imported from OSS
Differential Revision: D17595956
Pulled By: dzhulgakov
fbshipit-source-id: 801f9f5536b553f24c7a660064dd6fce685edd65
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26828
Pickle serialization for quantized modules is currently broken by https://github.com/pytorch/pytorch/issues/24045, so let's be loud and fail if the user tries to do it
Test Plan: Imported from OSS
Differential Revision: D17579127
Pulled By: jamesr66a
fbshipit-source-id: 3deccac7e4590c6f648f22bb79c57badf3bf0487
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26574
Since we also have `quantized::linear`, `quantize_linear` sounds
confusing, so we plan to rename it before the branch cut
Test Plan:
ci
Imported from OSS
Differential Revision: D17514876
fbshipit-source-id: 01d9005e6ec8cb9950b9d8bba122109c389641d3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26242
According to https://github.com/pytorch/pytorch/issues/19092 we always keep NCHW order and do handling inside the kernels. This PR fixes it for activations of the qconv by using MemoryLayout mechanism - activations stay logically as NCHW but strided as NHWC.
Note, that this version is more aggressive than eventual MemoryLayout mechanism - the QConv's output is always NHWC regardless of the input striding. I think it's ok as we don't have NCHW quantized kernels anyway - so the very first conv would magically switch the order, but I'm open to suggestions. Btw, it doesn't change behavior - same happens today in master because of the explicit permute() call.
Test Plan: Imported from OSS
Differential Revision: D17443218
Pulled By: dzhulgakov
fbshipit-source-id: cfd136ae0465acd8d8c26ffad87385dac9c88726
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26241
According to https://github.com/pytorch/pytorch/issues/19092 we always keep NCHW order and do handling inside the kernels. This PR fixes it for weights of the qconv by using MemoryLayout mechanism.
Test Plan: Imported from OSS
Differential Revision: D17443219
Pulled By: dzhulgakov
fbshipit-source-id: ce0eb92034a9977b3303dafab8b0414575171062
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25976
As recommended in https://github.com/pytorch/pytorch/pull/25877/files#r322956051:
> We should move more of these toward using BytesIO. Using files in tests is generally considered bad practice because it introduces syscalls and dependencies on the execution environment, and thus can cause test flakiness/instability.
ghstack-source-id: 89929947
Test Plan: CI
Differential Revision: D17310441
fbshipit-source-id: ba97cce4224225df45ff44062f1bc8ebefb25922
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25428
Added bias as an optional param to the quantized_linear_prepack function.
Bias is quantized during runtime using input scale and weight scale.
ghstack-source-id: 89601399
Test Plan: python test/run_test.py --exclude nn --verbose --bring-to-front quantization quantized quantized_tensor quantized_nn_mods quantizer
Differential Revision: D17121304
fbshipit-source-id: 8adb0e55e4aed0a5430aaa2c8639c8ad1639c85a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25678
As an effort to unify fbgemm and qnnpack at the dispatcher level, we need to have a generic name for the quantized backed ops.
Currently FBGEMM is guarded by the USE_FBGEMM macro and QNNPACK uses USE_QNNPACK.
ghstack-source-id: 89518961
Test Plan: buck test caffe2/test:quantized
Differential Revision: D17194364
fbshipit-source-id: 5960aedff6b8cb89eb3872c39b74caf54c0fbf20
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25598
att
Test Plan:
CI
Imported from OSS
Differential Revision: D17192467
fbshipit-source-id: 9ee93b02cc293bb71ed114534d92eedda3ddee88
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25338
As an effort to unify fbgemm and qnnpack at the dispatcher level, we need to have a generic name for the quantized backed ops.
Currently FBGEMM is guarded by the USE_FBGEMM macro and QNNPACK uses USE_QNNPACK.
TBD: Use compile time macro or run_time to switch between fbgemm and qnnpack.
ghstack-source-id: 89454244
Test Plan: buck test caffe2/test:quantized
Differential Revision: D17097735
fbshipit-source-id: 447112a7a421387724d3e29b8fd8412dfb1c373a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25212
In eager mode, all modules need to work with input tensors that can change qparams dynamically. This issue https://github.com/pytorch/pytorch/issues/23874 will address this via FBGEMM modifications. This is a work around before that.
ghstack-source-id: 89118038
Test Plan:
buck test caffe2/test:quantized -- 'test_conv_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details
Summary (total time 65.86s):
PASS: 1
FAIL: 0
SKIP: 0
FATAL: 0
TIMEOUT: 0
OMIT: 0
Differential Revision: D17064471
fbshipit-source-id: 3c192442b19bf2d9d88d4e52de6c24dc134a846f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24789
In eager mode, all modules need to work with input tensors that can change qparams dynamically. This issue https://github.com/pytorch/pytorch/issues/23874 will address this via FBGEMM modifications. This is a work around before that.
ghstack-source-id: 89003798
Test Plan:
buck test caffe2/test:quantized -- 'test_conv_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details
Summary (total time 65.86s):
PASS: 1
FAIL: 0
SKIP: 0
FATAL: 0
TIMEOUT: 0
OMIT: 0
Differential Revision: D16852280
fbshipit-source-id: 988f8ff91616eddf511e71926aa7d2d0f1938188
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24374
This is a duplicate to bring back #23704 with diff revision D16634539
Test Plan: Imported from OSS
Differential Revision: D16818664
Pulled By: zafartahirov
fbshipit-source-id: c8f7965356555a6a995eaeea6820ea62cbbea6fd
Summary:
- ~~Add a unit test for the Dynamic Quantized Linear operator (```torch.fbgemm_linear_quantize_weight```, ```torch.fbgemm_pack_quantized_matrix```, and ```torch.fbgemm_linear_int8_weight```) in ```test_quantized.py```.~~ Move this to D16404027 for a separate review.
- Add the Dynamic Quantized Linear module in ```torch/nn/quantized/modules/linear.py```. ~~This is in a rudimentary stage. Will add more functions later~~.
- Add the torch.quantize logic (prepare, eval, convert) for dynamic quantization.
- Add a unit test for the Dynamic Quantized Linear module in ```test_nn_quantized.py```.
- Add a unit test for the Model-level Quantization API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23128
ghstack-source-id: 88257232
Differential Revision: D16258664
fbshipit-source-id: 4be3ac39ee27c088b341c741d3f09f51d5a23ef0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24201
It turns out that the `run_test` script uses a blacklist of "exclude" tests and tests if the test name [starts with](https://github.com/pytorch/pytorch/blob/master/test/run_test.py#L342) the given blacklist item. `nn` was passed as a blacklist item in CI, and that meant that not only was test_nn skipped, but also test_nn_quantized. This renames the test to avoid this situation, and imo puts it in a better position lexicographically next to the other quantization tests.
Test Plan: Imported from OSS
Differential Revision: D16772820
Pulled By: jamesr66a
fbshipit-source-id: 4cde0729b48ae3e36fcedab9c98197831af82dde