Commit Graph

9 Commits

Author SHA1 Message Date
Zafar Takhirov
dc8785a022 Refactoing names for consistency
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27670

Test Plan: Imported from OSS

Differential Revision: D17846269

Pulled By: z-a-f

fbshipit-source-id: ed3c7441c185bf11b2e62879aa3ecbc654aa2d4e
2019-10-16 12:18:26 -07:00
Zafar Takhirov
27dc595215 Rename _intrinsic to intrinsic
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27194

Test Plan: Imported from OSS

Differential Revision: D17704957

Pulled By: zafartahirov

fbshipit-source-id: 46f02d129aa77c3047b2a6c606bfadd831a6b0fc
2019-10-02 18:53:06 -07:00
Supriya Rao
b805b5dab8 Unify quantized conv and linear tests (#26992)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26992

Run the same test for FBGEMM and QNNPACK backends.
Checks that QNNPACK or FBGEMM are supported before running it (using supported_qengines)

Test Plan:
python test/test_quantized.py TestQuantizedLinear
    python test/test_quantized.py TestQuantizedConv
    python test/test_quantized_models.py
    python test/test_quantized_nn_mods.py

Imported from OSS

Differential Revision: D17689171

fbshipit-source-id: e11c0a5e41f5f4e6836a614a5b61e4db3c5e384b
2019-10-01 14:07:16 -07:00
Raghuraman Krishnamoorthi
dddae3f854 Fuse module enhancements (#26457)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26457

Enhancement to fuse module to support sequentials, fuse list can now be just like the state dict.
Also add support for Conv-Relu and linear-relu fusion
Also support inplace and out of place fusion of models.
ghstack-source-id: 91076386

Test Plan:
buck test caffe2/test:quantization -- 'test_fusion_sequential_model_train \(test_quantization\.FusionTest\)' --print-passing-details
buck test caffe2/test:quantization -- 'test_fusion_sequential_model_eval \(test_quantization\.FusionTest\)' --print-passing-details

Differential Revision: D17466382

fbshipit-source-id: 0a548f8f4c366f3ecc59db693bac725ccd62328e
2019-09-30 22:00:20 -07:00
Raghuraman Krishnamoorthi
32b0e8c980 Emulate weight and activation only quant with fake quant, numerics test (#26625)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26625

ghstack-source-id: 91008296

Test Plan: buck test caffe2/test:quantized -- 'test_weight_only_activation_only_fakequant \(test_quantized_models\.ModelNumerics\)' --print-passing-details

Differential Revision: D17520342

fbshipit-source-id: 26e148d3299afcfdfb1187aff6ab80687ed8df47
2019-09-30 00:37:07 -07:00
Raghuraman Krishnamoorthi
2ccbdb79c8 Per-channel baseline (#26516)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26516

ghstack-source-id: 90982010

Test Plan:
Integrate per-channel support into conv and linear modules.
The following tests pass:
buck test caffe2/test:quantized -- 'test_linear_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details

buck test caffe2/test:quantized -- 'test_conv_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details

buck test caffe2/test:quantized -- 'test_float_quant_compare_per_channel \(test_quantized_models\.ModelNumerics\)' --print-passing-details

Differential Revision: D17342622

fbshipit-source-id: f0d618928e3d9348672c589a6b7a47049c372a2e
2019-09-28 14:05:06 -07:00
Dmytro Dzhulgakov
764bf826e3 Remove fbgemm_is_cpu_supported in favor of torch.backends.quantized.supported_qengines (#26840)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26840

Cleaning up top-level namespace. Also cosmetic changes to torch.backends.quantized

Test Plan: Imported from OSS

Differential Revision: D17604403

Pulled By: dzhulgakov

fbshipit-source-id: c55af277ea7319d962a82a6120f65ccd47a60abc
2019-09-27 13:45:15 -07:00
Dmytro Dzhulgakov
0a8a779abe Add more inplace arguments to quantization top level API (#26782)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26782

At least we should be consistent on top-level APIs and prepare/convert/etc.

Logic is inplace=False by default but top-level APIs take care of doing fewer copies.

Also renames always-inplace methods like add_observer to have underscore in the end.

One fix for MinMaxObserver was triggered by deepcopy surfacing that we were accidentally keeping autograd around

Test Plan: Imported from OSS

Differential Revision: D17595956

Pulled By: dzhulgakov

fbshipit-source-id: 801f9f5536b553f24c7a660064dd6fce685edd65
2019-09-26 00:07:07 -07:00
Raghuraman Krishnamoorthi
17c1b2c715 Relax scale to prevent saturation in conv/linear. Add test to verify precision of numerics of quantized model with updated observer. This test catches errors in (#25667)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25667

Relax scale and zero-point for activations to ensure that fbgemm implementations of conv and linear do not saturate due to 16 bit intermediate accumulation.

Add test to verify precision of numerics of quantized model with updated observer. This test catches errors in
handling layouts for quantized ops in addition to saturation/quantization errors.
ghstack-source-id: 89587942

Test Plan:
buck test caffe2/test:quantized -- 'test_float_quant_compare \(test_quantized_models\.ModelNumerics\)' --print-passing-details

Passes when SQNR > 35 dB

buck test caffe2/test:quantization -- 'test_minmax_observer \(test_quantization\.ObserverTest\)' --print-passing-details
Passes with additional coverage for observer changes

Differential Revision: D17140498

fbshipit-source-id: 42c58e726bb0b0f51890590ee2525428f9a8d24e
2019-09-06 17:18:01 -07:00