Commit Graph

11 Commits

Author SHA1 Message Date
Supriya Rao
b805b5dab8 Unify quantized conv and linear tests (#26992)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26992

Run the same test for FBGEMM and QNNPACK backends.
Checks that QNNPACK or FBGEMM are supported before running it (using supported_qengines)

Test Plan:
python test/test_quantized.py TestQuantizedLinear
    python test/test_quantized.py TestQuantizedConv
    python test/test_quantized_models.py
    python test/test_quantized_nn_mods.py

Imported from OSS

Differential Revision: D17689171

fbshipit-source-id: e11c0a5e41f5f4e6836a614a5b61e4db3c5e384b
2019-10-01 14:07:16 -07:00
Raghuraman Krishnamoorthi
7dc7075795 Per channel fake quant (#26623)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26623

Per-channel fake quant cpu and cuda operators,
per-channel support in fake quant module,
tests for per-channel fake-quant and serializability of fake quant modules

ghstack-source-id: 91008299
ghstack-source-id: 91008299

Test Plan:
buck test mode/dev caffe2/test:fake_quant  --
 Started new test run: https://our.intern.facebook.com/intern/testinfra/testrun/1970324848875929
      ✓ caffe2/test:fake_quant - test_backward_per_tensor (test_fake_quant.TestFakeQuantizePerTensor) 0.242 1/10 (passed)
      ✓ caffe2/test:fake_quant - test_numerical_consistency_per_tensor (test_fake_quant.TestFakeQuantizePerTensor) 0.204 2/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_serializable (test_fake_quant.TestFakeQuantizePerTensor) 0.174 3/10 (passed)
      ✓ caffe2/test:fake_quant - test_numerical_consistency_per_channel (test_fake_quant.TestFakeQuantizePerChannel) 0.279 4/10 (passed)
      ✓ caffe2/test:fake_quant - test_forward_per_tensor (test_fake_quant.TestFakeQuantizePerTensor) 0.241 5/10 (passed)
      ✓ caffe2/test:fake_quant - test_forward_per_channel (test_fake_quant.TestFakeQuantizePerChannel) 0.353 6/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_module (test_fake_quant.TestFakeQuantizePerTensor) 0.354 7/10 (passed)
      ✓ caffe2/test:fake_quant - test_backward_per_channel (test_fake_quant.TestFakeQuantizePerChannel) 0.334 8/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_serializable (test_fake_quant.TestFakeQuantizePerChannel) 0.168 9/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_module (test_fake_quant.TestFakeQuantizePerChannel) 0.429 10/10 (passed)
      ✓ caffe2/test:fake_quant - main 0.000 (passed)

Differential Revision: D17439406

fbshipit-source-id: 64bfff5e4f40bc2ab8af2b432c7bc33805418077
2019-09-30 00:21:25 -07:00
Dmytro Dzhulgakov
764bf826e3 Remove fbgemm_is_cpu_supported in favor of torch.backends.quantized.supported_qengines (#26840)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26840

Cleaning up top-level namespace. Also cosmetic changes to torch.backends.quantized

Test Plan: Imported from OSS

Differential Revision: D17604403

Pulled By: dzhulgakov

fbshipit-source-id: c55af277ea7319d962a82a6120f65ccd47a60abc
2019-09-27 13:45:15 -07:00
Supriya Rao
45391ccecb Update qengine flag in python to string (#26620)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26620

This change updates torch.backend.quantized.engine to accept string ("fbgemm"/"qnnpack"/"none" for now).
set_qengine and get_qengine return an int which represents the at::QEngine enum

Test Plan:
python test/test_torch.py

Imported from OSS

Differential Revision: D17533582

fbshipit-source-id: 5103263d0d59ff37d43dec27243cb76ba8ba633f
2019-09-23 17:56:50 -07:00
Supriya Rao
bb1efb3bee Adding quantized::linear function for pytorch mobile in c10 (#26135)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26135

This change adds the support to call QNNPACK using the refactored API for Linear operators (Fully Connected)
It also has certain cmake changes to enable builing and using pytorch_qnnpack inside aten
I have disabled USE_QNNPACK in CMakeLists.txt. Enabling it results in picking kernels from third_party/QNNPACK during runtime since the function names are the same.

Test Plan:
python test/test_quantized.py TestQNNPackOps.test_qlinear_qnnpack

Imported from OSS

Differential Revision: D17434885

fbshipit-source-id: 084698026938f4529f61d12e86dfe82534ec73dd
2019-09-17 16:16:39 -07:00
Zafar Takhirov
3b3261ca8e Adding Scalar add/mul. (#24447)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24447

Note: This should be landed ONLY after #24259

Pull Request resolved: https://github.com/pytorch/pytorch/pull/24447

Differential Revision: D16846006

Test Plan: Imported from OSS

Pulled By: zafartahirov

fbshipit-source-id: 458fd65279d98cb177ef206240d24dfcbc8d1c1b
2019-08-26 13:05:44 -07:00
Jianyu Huang
ec1e53b462 Add dynamic quantized Linear op in PyTorch (#23464)
Summary:
As suggested in https://github.com/pytorch/pytorch/pull/22891, we will add an overload for torch.fbgemm_linear_int8_weight (dynamic quantized version of linear function) that takes PackedLinearWeight as input and is pretty much the same in signature as regular aten::linear.

The previous Diff D16381552 is reverted because `quantize_linear` expects the scale to be `float`, and the zero_point to be `int`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/23464
ghstack-source-id: 88257231

Differential Revision: D16527741

fbshipit-source-id: 66585f668c6e623c50514eb11633bb711d8767f2
2019-08-13 19:59:35 -07:00
Edward Yang
9dad13e1f0 Revert "Add fbgemm_qlinear_dynamic op (#23104)"
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23449

Test Plan: Imported from OSS

Differential Revision: D16524768

Pulled By: ezyang

fbshipit-source-id: 9eb01b021011d1172317b5adb774c10c42ac2b86
2019-07-26 15:02:33 -07:00
Jianyu Huang
47a54295ee Add fbgemm_qlinear_dynamic op (#23104)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23104

ghstack-source-id: 87247148

As suggested in https://github.com/pytorch/pytorch/pull/22891, we will add an overload for ```torch.fbgemm_linear_int8_weight``` (dynamic quantized version of linear function) that takes PackedLinearWeight as input and is pretty much the same in signature as regular aten::linear.

Differential Revision: D16381552

fbshipit-source-id: 1ccc4174fd02c546eee328940ac4b0da48fc85e8
2019-07-26 10:11:56 -07:00
Zafar Takhirov
9f4df63c2c Moving np function to test area
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23118

Test Plan: Imported from OSS

Differential Revision: D16400634

Pulled By: zafartahirov

fbshipit-source-id: 44872fdf64b20a6b67e5176042fe58c8c2359738
2019-07-19 22:11:21 -07:00
Lucas Kabela
3e3e6ee335 Add common_quantized test case utilities (#22694)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22694

Move quantization and quantized utility functions for testing to common_quantized.py and common_quantization.py.  Addditionally, add a quantized test case base class which contains common methods for checking the results of quantization on modules.  As a consequence of the move, fixed the import at the top of test_quantized.py, and test_quantization to use the new utility

Reviewed By: jerryzh168

Differential Revision: D16172012

fbshipit-source-id: 329166af5555fc829f26bf1383d682c25c01a7d9
2019-07-10 12:23:36 -07:00