Adds several unary functions and add. Enables tests for unary functions in test_sparse but not enabling other tests yet, needs more ops before we fully migrate to testing SparseMPS with `test_sparse.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160839
Approved by: https://github.com/malfet
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Which heavily borrows implementation logic from `topk`
As this method is non-deterministic, modified the logic for cpu-ops indices comparison with just an equality statement, as by default random numbers picked for input tensor allow for quite a lot of overlaps
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161817
Approved by: https://github.com/dcci
Adds several unary functions and add. Enables tests for unary functions in test_sparse but not enabling other tests yet, needs more ops before we fully migrate to testing SparseMPS with `test_sparse.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160839
Approved by: https://github.com/malfet
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Fixes#161640
Check if tensors are contiguous before using the no-graph implementation. Using the script in the issue above with this change I get expected results.
```
MPS contiguous result sample: tensor([ 1.3600, -2.9516, 1.3207, -3.5132, 1.7061], device='mps:0')
MPS non-contig result sample: tensor([ 1.3600, -2.9516, 1.3207, -3.5132, 1.7061], device='mps:0')
CPU non-contig result sample: tensor([ 1.3600, -2.9516, 1.3207, -3.5132, 1.7061])
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161641
Approved by: https://github.com/malfet
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Fixes#160743
The MPS impl of `avg_pool2d` seems to only give incorrect results when `ceil_mode=True`. I wrote a performance measurement script (0ee6e58643/avg_pool_mps/perf_2d.py) which tests a bunch of different cases and also marks the cases where MPS and CPU results do not match.
I found that if I update `avg_pool2d` to use the new Metal kernel in all cases, that fixes all the mismatches, but it also decreases performance for some of the `ceil_mode=False` cases. So I opted to only run the new Metal kernel when `ceil_mode=True`, which does not significantly decrease performance in any of the cases tested.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161011
Approved by: https://github.com/malfet
Looks like all MPS operations will crash if one of tensor dimentions are
greater than `2**31-1`
Change it into a structured exception, by checking tensor size before
attempting to create MPS Tensor
Add regression test for it. Before this change running following will abort with exception
```
% python3 -c "import torch; torch.randint(0, 10, (2**31,), dtype=torch.uint8, device='mps')"
/AppleInternal/Library/BuildRoots/1c8f7852-1ca9-11f0-b28b-226177e5bb69/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShaders/MPSCore/Types/MPSNDArray.mm:829: failed assertion `[MPSNDArray initWithDevice:descriptor:isTextureBacked:] Error: NDArray dimension length > INT_MAX'
zsh: abort python3 -c·
```
Skip the test on MacOS-13, as it crashes somewhere deep in MPSGraph framework with
```
/AppleInternal/Library/BuildRoots/c651a45f-806e-11ed-a221-7ef33c48bc85/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShaders/MPSCore/Types/MPSNDArray.mm:724: failed assertion `[MPSTemporaryNDArray initWithDevice:descriptor:] Error: total bytes of NDArray > 2**32'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158824
Approved by: https://github.com/dcci
ghstack dependencies: #158690, #158823
Fixes#156707
Detect if all values along the softmax axis are infs and overwrite the outputs for those computations with zeros before the final matmul. The behavior should be aligned with the CPU implementation.
These types of cases where all values along the dimension in the attention mask are false leading to the undefined outputs in softmax occur with left padded batches for generation in HF transformers according to the original issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157727
Approved by: https://github.com/malfet
Move `MetalShaderLibrary::bind_tensors` private method to OperatorUtils.h and extract `iter_tensor_offset` method, that returns an offset from the start of the storage associated with given tensor inside the iterator
Migrated `index`, `index_put[_accumulate][_serial]` to the new paradigm that does not require additional tensor for indices nor special handling for 32 vs 64-bit offset, which resulted in almost 2x perf gain for 2000x2000 tensor, see results below before
```
[------------------------------------------------------------ -----------------------------------------------------------]
| 11x50x50 | 11x100x100 | 11x500x500 | 11x1000x1000 | 11x2000x2000
1 threads: ----------------------------------------------------------------------------------------------------------------
__getitem__ (torch.int8, torch.int64) | 383.5 | 379.8 | 470.9 | 1232.9 | 4410.3
__getitem__ (torch.float16, torch.int64) | 379.6 | 354.5 | 533.2 | 1290.3 | 4442.2
__getitem__ (torch.float32, torch.int64) | 360.8 | 338.6 | 478.6 | 1348.9 | 4870.4
Times are in microseconds (us).
```
and after
```
[------------------------------------------------------------ -----------------------------------------------------------]
| 11x50x50 | 11x100x100 | 11x500x500 | 11x1000x1000 | 11x2000x2000
1 threads: ----------------------------------------------------------------------------------------------------------------
__getitem__ (torch.int8, torch.int64) | 349.8 | 330.5 | 432.6 | 764.5 | 1961.2
__getitem__ (torch.float16, torch.int64) | 342.5 | 330.7 | 434.7 | 741.0 | 1969.4
__getitem__ (torch.float32, torch.int64) | 332.2 | 326.1 | 445.4 | 751.3 | 1972.6
Times are in microseconds (us).
```
While migrating also fixed index_put_accumulate for boolean types, by using compare_and_exchange trick over uint
Fixes https://github.com/pytorch/pytorch/issues/153560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158064
Approved by: https://github.com/dcci
Note on backward precision over fp16:
A float16 number has 10 bits of mantissa, 5 bits of exponent, and 1 bit for the sign. If the sign bit is positive, then with a mantissa $m$ and exponent $e$ represented in base 10, the number that the float16 format represents is $(1 + m / 1024) \exp2(e)$. ([source](https://en.wikipedia.org/wiki/Half-precision_floating-point_format))
Consider adding two numbers $a$ and $b$ which have arbitrary mantissas, and say their exponents are $e_a = 1$ (so $2 \le a \lt 4$) and $e_b=-3$ (so $0.175 \le b \lt 0.25$). Assume that the result has the same exponent as $a$. Since the exponents differ by 4, we'll effectively need to truncate the 4 rightmost bits of $b$'s mantissa, which would introduce a maximum error on the order of $(2^4 / 1024) \exp2(-3) \approx 0.002$.
The error is nearly the same if $e_b = -2$ (so $0.25 \le b \lt 0.5$), where the 3 rightmost bits are truncated, giving a maximum error on the order of $(2^3 / 1024) \exp2(-2) \approx 0.002$. Same for $e_b=-1$.
So if we're adding up nine different numbers that all have exponents -3, -2, or -1, and they sum to a number with exponent 1, then we would expect a maximum error of several times greater than 0.002. In my comments above, summing those particular nine numbers in different ways gave results that ranged between 3.1816 and 3.1758, a difference of $0.0058 \approx 2.9 * 0.002$.
That's within the acceptable bounds, and we can safely just increase the error tolerance used in test_output_grad_match for the case of max_pool3d_backward with float16.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157498
Approved by: https://github.com/malfet
Otherwise it turns test into a trivial one(that always succeeds), as following example demonstrates
```python
import torch
from torch.testing._internal.common_utils import serialTest, run_tests, TestCase
class MegaTest(TestCase):
@serialTest
def test_foo(self):
if hasattr(self.test_foo, "pytestmark"):
print("foo has attr and it is", self.test_foo.pytestmark)
print("foo")
@serialTest()
def test_bar(self):
if hasattr(self.test_bar, "pytestmark"):
print("bar has attr and it is", self.test_bar.pytestmark)
print("bar")
if __name__ == "__main__":
run_tests()
```
That will print
```
test_bar (__main__.MegaTest.test_bar) ... bar has attr and it is [Mark(name='serial', args=(), kwargs={})]
bar
ok
test_foo (__main__.MegaTest.test_foo) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.013s
```
Added assert that arg is boolean in the decorator to prevent such silent skips in the future
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157388
Approved by: https://github.com/clee2000
Addressing #154890
Not really a proper fix but at least it's more informative than the current crash.
For a more long term solution I'm testing if we can use the TopK API released in MacOS14 as it does not have the same MPSScan op issue that the Sort and ArgSort are hitting.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155475
Approved by: https://github.com/kulinseth
Fixes#154615
Enables using ConvTranspose3D since it seems support exists both on MacOS 14 and 15.
For the half dtypes the discrepancy of CPU and GPU implementations is too large to conclude whether there is a bug in the implementation or not without a more rigorous study on what bounds are there to the expected error. So they are left unsupported for now and an assert is added to notify the user if the op is called with fp16 or bf16 inputs.
Tests for ConvTranspose3D were enabled for the supported data types.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154696
Approved by: https://github.com/malfet
This accomplishes following:
- Fixes correctness problem with large integer types (though probably makes it slower, but this could not be avoided if one wants to compute accurate answer)
- Makes op faster for floating point types (as Metal kernel invocation is faster than creating MPSGraph)
- Eliminates need for several correctness workarounds
Fixes https://github.com/pytorch/pytorch/issues/154171
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154280
Approved by: https://github.com/dcci
ghstack dependencies: #154275, #154290
`isin_Tensor_Scalar_out` is just a redispatch to eq/neq
`isin_Scalar_Tensor_out` redispatches back to generic `isin` op, but needs a small tweak to handle float scalars
Make sure that `out` is resized to an expected value in `isin_Tensor_Tensor_out_mps`
Add unittests to validate that, but skip them on MacOS-13, where MPS op just returns garbage
Before this change both of those failed
```python
>>> import torch
>>> t = torch.tensor([0, 1, 2], device='mps')
>>> torch.isin(t, 1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError: The operator 'aten::isin.Tensor_Scalar_out' is not currently implemented for the MPS device. If you want this op to be considered for addition please comment on https://github.com/pytorch/pytorch/issues/141287 and mention use-case, that resulted in missing op as well as commit hash 3b875c25ea6d8802a0c53af9eb961ddf2f058188. As a temporary fix, you can set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op. WARNING: this will be slower than running natively on MPS.
>>> torch.isin(1, t)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError: The operator 'aten::isin.Scalar_Tensor_out' is not currently implemented for the MPS device. If you want this op to be considered for addition please comment on https://github.com/pytorch/pytorch/issues/141287 and mention use-case, that resulted in missing op as well as commit hash 3b875c25ea6d8802a0c53af9eb961ddf2f058188. As a temporary fix, you can set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op. WARNING: this will be slower than running natively on MPS.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154010
Approved by: https://github.com/Skylion007, https://github.com/dcci, https://github.com/manuelcandales
ghstack dependencies: #153970, #153971, #153997