Introducing two updates.
1. Add param to He initialization scheme in torch.nn.init
Problem solved:
The function calculate_gain can take an argument to specify the type of non-linearity used. However, it wasn't possible to pass this argument directly to the He / Kaiming weight initialization function.
2. Add util to clip gradient value in torch.nn.utils.clip_grad
Problem solved:
DL libraries typically provide users with easy access to functions for clipping the gradients both using the norm and a fixed value. However, the utils clip_grad.py only had a function to clip the gradient norm.
* add param to He initialization scheme in torch.nn.init
* add util to clip gradient value in torch/nn/utils/clip_grad.py
* update doc in torch.nn.utils.clip_grad
* update and add test for torch.nn.utils.clip_grad
* update function signature in torch.nn.utils.clip_grad to match suffix_ convention
* ensure backward compatibility in torch.nn.utils.clip_grad
* remove DeprecationWarning in torch.nn.utils.clip_grad
* extend test and implementation of torch.nn.utils.clip_grad
* update test and implementation torch.nn.utils.clip_grad
* Improvize documentation
1. Add formula for erf, erfinv
2. Make exp, expm1 similar to log, log1p
3. Symbol change in ge, le, ne, isnan
* Fix minor nit in the docstring
* More doc improvements
1. Added some formulae
2. Complete scanning till "Other Operations" in Tensor docs
* Add more changes
1. Modify all torch.Tensor wherever required
* Fix Conv docs
1. Fix minor nits in the references for LAPACK routines
* Improve Pooling docs
1. Fix lint error
* Improve docs for RNN, Normalization and Padding
1. Fix flake8 error for pooling
* Final fixes for torch.nn.* docs.
1. Improve Loss Function documentation
2. Improve Vision Layers documentation
* Fix lint error
* Improve docstrings in torch.nn.init
* Fix lint error
* Fix minor error in torch.nn.init.sparse
* Fix Activation and Utils Docs
1. Fix Math Errors
2. Add explicit clean to Makefile in docs to prevent running graph generation script
while cleaning
3. Fix utils docs
* Make PYCMD a Makefile argument, clear up prints in the build_activation_images.py
* Fix batch norm doc error
Once Variable and Tensor are merged the existing Variable test would
cause an infinite recursion. Instead, modify the Variables directly
inside a `no_grad()` block.
The function iterates over columns and sets "sparsity" fraction of entires in each column to 0. The number of zeros in a column (num_zeros) is then ceil(rows*sparsity)