Commit Graph

148 Commits

Author SHA1 Message Date
Wanchao Liang
799633e4cd move casting ops from prim to aten
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22275

Test Plan: Imported from OSS

Differential Revision: D16060597

Pulled By: wanchaol

fbshipit-source-id: a11d8ad3b037e15bd670cc7cd3fefd4f0abd0bba
2019-07-03 22:22:28 -07:00
Brian Vaughan
97a604ef57 Rereapply optional ScalarType interface changes that were reverted in D16079809 (#22456)
Summary:
re-apply changes reverted in:
https://github.com/pytorch/pytorch/pull/22412

Also change log_softmax to take positional arguments. Long-term we do want the kwarg-only interface, but seems to currently be incompatible with jit serialization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22456

Differential Revision: D16097159

Pulled By: nairbv

fbshipit-source-id: 8cb73e9ca18fc66b35b873cf4a574b167a578b3d
2019-07-03 20:03:25 -07:00
Wanchao Liang
dff2c07183 Manual revert of D16012838
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22412

Reviewed By: nairbv, houseroad

Differential Revision: D16079809

fbshipit-source-id: ee0d805ff7a2bc5f98bcc65f90b8199751c840f6
2019-07-01 19:58:21 -07:00
Brian Vaughan
7707dee761 Re apply optional ScalarType changes (#22237)
Summary:
This is (mostly) the re-application of:
https://github.com/pytorch/pytorch/pull/21088

which was reverted due to an issue conflicting with changes in:
https://github.com/pytorch/pytorch/pull/22104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22237

Differential Revision: D16012838

Pulled By: nairbv

fbshipit-source-id: 35f4a73c97ab68b4e2648aca96b2176f07b5a883
2019-06-26 13:36:25 -07:00
Vitaly Fedyunin
516c7e4456 Adding memory_format to empty and empty_like operators (#20558)
Summary:
Original RFC https://github.com/pytorch/pytorch/issues/19092

To ensure that we are not introducing BC breaking change, empty_like returns contiguous tensor by default.

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nCwh = torch.empty_like(nhwC)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Now we need a way to preserve memory format in `empty_like`

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nhwC, memory_format=torch.preserve_format)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

like_nCwh = torch.empty_like(nCwh, memory_format=torch.preserve_format)
like_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Usage of `torch.preserve_format` allows us to avoid `if` constructs.

We can also generate different memory format outputs

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nCwh, memory_format=torch.channels_last)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

new_nCwh = torch.empty_like(nhwC, memory_format=torch.contiguous_format)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20558

Differential Revision: D15502474

Pulled By: VitalyFedyunin

fbshipit-source-id: 2e120d57eefad6fb8e04b8322c79871392f64331
2019-06-26 11:48:27 -07:00
Lara
7b1ffba3bf ArgumentStash for Scalar arguments (#21931)
Summary:
Scalars are being traced as constants.
This PR is to fix this issue.

The ONNX Graph for Test_Full_op() before and after this change:

def Test_Full_op():
  class Test_Full(nn.Module):
    def forward(self, x):
      return torch.full((3, 4), x, dtype=torch.long)
  model = Test_Full()
  x = torch.tensor(12)
  output = model(x)

Before this change:
graph(%input1 : Long()):
%output1 : Float(3, 4) = onnx::Constant[value=<Tensor>]
return (%output1)

After this change:
graph(%input1 : Long()):
%1 : int[] = onnx::Constant[value= 3 4 [ Variable[CPULongType]{2} ]]
%2 : Tensor = onnx::ConstantOfShape[value={0}]
%output1 : Float(3, 4) = onnx::Add(%2, %input1)
return (%output1)

Similar PR : https://github.com/pytorch/pytorch/pull/12939
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21931

Reviewed By: zrphercule

Differential Revision: D15950066

Pulled By: houseroad

fbshipit-source-id: 3470665d88fa34faa600940ef16b069a06002cd5
2019-06-25 15:22:08 -07:00
Zachary DeVito
5b87049c66 remove uses of std::shared_ptr<Module> (#21934)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21934
ghimport-source-id: e64ab9096f43749ead3ac5567675b815da295664

Test Plan: Imported from OSS

Differential Revision: D15892401

Pulled By: zdevito

fbshipit-source-id: 6424139206593ff944556c69d8a54723884eacaf
2019-06-25 13:24:38 -07:00
Michael Suo
e016a424ef Revert D15944971: [pytorch][PR] merge interfaces that have an optional scalartype parameter
Differential Revision:
D15944971

Original commit changeset: 53473c370813

fbshipit-source-id: a18158b448cb8993b12e1a3bf2c2a3e0d6df6b10
2019-06-24 09:41:33 -07:00
Brian Vaughan
142361a7e4 merge interfaces that have an optional scalartype parameter (#21088)
Summary:
This change is backwards incompatible in *C++ only* on mean(), sum(), and prod() interfaces that accepted either of:
```
Tensor sum(IntArrayRef dim, bool keepdim=false) const;
Tensor sum(IntArrayRef dim, ScalarType dtype) const;
```
but now to specify both the dim and dtype will require the keepdim parameter:
```
Tensor sum(IntArrayRef dim, bool keepdim=false, c10::optional<ScalarType> dtype=c10::nullopt) const;
```

[xla ci]
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21088

Reviewed By: ailzhang

Differential Revision: D15944971

Pulled By: nairbv

fbshipit-source-id: 53473c370813d9470b190aa82764d0aea767ed74
2019-06-24 07:17:58 -07:00
James Reed
f7b2778cb1 s/uniqueName/debugName/ (#22096)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22096
ghimport-source-id: 8f1d994b98432942b5beeb10bf6d30e447d51997

Test Plan: Imported from OSS

Differential Revision: D15956004

Pulled By: jamesr66a

fbshipit-source-id: 319d2d20ef0863249a8a2bdd228b4f792d37bfab
2019-06-21 20:54:53 -07:00
Ailing Zhang
856268c716 Revert D15947873: [JIT] s/uniqueName/debugName
Differential Revision:
D15947873

Original commit changeset: 31a2b30d0ce9

fbshipit-source-id: ef1c0f120c1835184d8106d176cea58ec6ad40b7
2019-06-21 18:51:03 -07:00
James Reed
36e4b54420 s/uniqueName/debugName (#22048)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22048
ghimport-source-id: a82d80ceec1d8055ce4cf62df10ade4a224109f8

Test Plan: Imported from OSS

Differential Revision: D15947873

Pulled By: jamesr66a

fbshipit-source-id: 31a2b30d0ce911edf5791ca10040a1e968750b06
2019-06-21 17:59:38 -07:00
Zachary DeVito
eda08b0aae script::Module as a view. (#21814)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21814
ghimport-source-id: 49cfea6101ad9ca438600c465762e23252e05ff3

Test Plan: Imported from OSS

Differential Revision: D15839583

Pulled By: zdevito

fbshipit-source-id: ab4ef31a523b3ac1477aa7e6d4d9513e7408c560
2019-06-18 13:58:49 -07:00
Zachary DeVito
972ec676b2 Remove lowered execution (#21674)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21674
ghimport-source-id: b8e27f0ce9b8b362daf73556ee67457fb5355062

Reviewed By: eellison

Differential Revision: D15777726

Pulled By: zdevito

fbshipit-source-id: 718ac676c9a1bcf99b856862fd29631d825645da
2019-06-16 14:29:18 -07:00
davidriazati
220efdbdc4 Refactor pybind_utils.h (#21550)
Summary:
This refactors pybind_utils so we can have all our type-inferring stuff in
1 place (e.g. for #21379)

There is some follow up work to make the error messages better, but I think that's fine to save for another PR.
](https://our.intern.facebook.com/intern/diff/15727002/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21550

Pulled By: driazati

Differential Revision: D15727002

fbshipit-source-id: a6974f2e1e5879f0503a18efc138da31cda7afa2
2019-06-14 17:27:45 -07:00
James Reed
4bcc72fe95 Support for NamedTuple (#21428)
Summary:
Resolves https://github.com/pytorch/lockdown/issues/18

This implements NamedTuple by taking advantage of the existing `names` field in `TupleType`.

TODO: This currently doesn't retain the NamedTuple-ness through serialization. Discussed with suo offline, we can probably make a way to define an anonymous NamedTuple in script (e.g. `NamedTuple('Foo', [('a', int), ('b', float), ('c', List[float])])` and serialize that
TODO: implement support for calling the constructor with kwargs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21428

Differential Revision: D15741564

Pulled By: jamesr66a

fbshipit-source-id: c077cbcea1880675ca6deb340a9ec78f824a136c
2019-06-14 16:45:56 -07:00
Zachary DeVito
8c57ce87b0 make tests pass with enable_first_class_module() enabled. (#21565)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21565
ghimport-source-id: d1fe735fb7821eadc59116fb921d8fe39a49f818

Reviewed By: driazati

Differential Revision: D15729503

Pulled By: zdevito

fbshipit-source-id: fabb678f040d21fae7545e3b2be1d098e24c544e
2019-06-12 17:13:00 -07:00
Zachary DeVito
56f4602630 Add WeakIValue, use in tracer. (#21515)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21515
ghimport-source-id: 7898a68791db2b5050164ab01d6ca6991e05746d

Reviewed By: suo

Differential Revision: D15719981

Pulled By: zdevito

fbshipit-source-id: 42cf26cf6541bcdf95f1343da3b9228fe2c229da
2019-06-12 17:12:53 -07:00
Sebastian Messmer
b527e48588 Use c10::List (#21177)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21177

- Integrate c10::ListPtr into IValue and the c10 dispatcher.
- Streamline conversion to/from IValue. Before, we had IValue::to<> and kernel_functor.h had its own ivalue_to_arg_type and return_type_to_ivalue. They are now unified. Also, this means that nested types like Dicts of Lists of Optional of Dict of ... do work as expected now

Differential Revision: D15476433

fbshipit-source-id: bde9df80df20091aa8e6ae17ba7e90abd149b954
2019-06-12 13:58:24 -07:00
Zachary DeVito
04e6564f0c clean up the TracingState API (#21564)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21564
ghimport-source-id: b6f71e2238f6f7c8de6cfbf6969a5e08e07be46c

Reviewed By: suo

Differential Revision: D15729497

Pulled By: zdevito

fbshipit-source-id: aacfea6058fadb572df692aa9ebd6cab0bcd03fc
2019-06-09 15:28:32 -07:00
Zachary DeVito
69aa2b2814 Collapse tracing_state.h into tracer.h (#21563)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21563
ghimport-source-id: de87e5e621da33326a9d2cb8a57d82d355166479

Reviewed By: suo

Differential Revision: D15729499

Pulled By: zdevito

fbshipit-source-id: 17b3e2e71d004f08c4413e80091388ae9ac2df2b
2019-06-09 15:28:29 -07:00
Zachary DeVito
c27cabe2d7 Revert D15719982: Collapse tracing_state.h into tracer.h
Differential Revision:
D15719982

Original commit changeset: 56bb021dd949

fbshipit-source-id: 2eb3e2c9745c35a84ebcc0fc7ac62b5f1fdd6437
2019-06-07 22:20:37 -07:00
Zachary DeVito
3cfe914191 Revert D15719980: clean up the TracingState API
Differential Revision:
D15719980

Original commit changeset: 3de2746c3f3c

fbshipit-source-id: 4610e215936b2476a0271355ef3b8f1f480bdea8
2019-06-07 22:20:34 -07:00
Zachary DeVito
dd0faf4366 clean up the TracingState API (#21514)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21514
ghimport-source-id: 6a9b6fdd7e696ea29e8715482708efe897230e4d

Reviewed By: jamesr66a

Differential Revision: D15719980

Pulled By: zdevito

fbshipit-source-id: 3de2746c3f3c3de4111b4cb73f4c4acedbf28862
2019-06-07 20:57:05 -07:00
Zachary DeVito
8c5f3acfc0 Collapse tracing_state.h into tracer.h (#21513)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21513
ghimport-source-id: 86278929818a8fc65684bd8f2ffac31460772fe9

Reviewed By: jamesr66a

Differential Revision: D15719982

Pulled By: zdevito

fbshipit-source-id: 56bb021dd949668562ea481c5ff0115a9ea2b02e
2019-06-07 20:57:01 -07:00
Wanchao Liang
113a27ee45 bake constants into the traced graph, get rid of getNestedValueTrace (#21046)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21046
ghimport-source-id: 5cb3efb1896fbe42336e24c14fbf0bb5e646528e

Differential Revision: D15530991

Pulled By: wanchaol

fbshipit-source-id: b096ca5a1cdce496742b7f7e1de3ef8d21e9a8b0
2019-06-03 21:48:11 -07:00
Wanchao Liang
2cd1c78632 Revert D15523444: [jit] move casting ops from prim to aten
Differential Revision:
D15523444

Original commit changeset: 642342bf1cce

fbshipit-source-id: 29de1c7e19cbb3273230c280346e786e61d2d445
2019-05-29 13:42:05 -07:00
Wanchao Liang
a0111aaf0d move casting ops from prim to aten (#21002)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21002
ghimport-source-id: 4c88a54a3ecb76c5ca3c2c328b749350860a166d

Differential Revision: D15523444

Pulled By: wanchaol

fbshipit-source-id: 642342bf1ccea83c88897bc023979a32ee01addf
2019-05-29 12:36:47 -07:00
Roy Li
3038cf8eee Remove THSTensor and SparseTensorRef (#20877)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20877
ghimport-source-id: a07f53ca158f9a3dce7a25ef5a169871e98ea3ea

Differential Revision: D15480353

Pulled By: li-roy

fbshipit-source-id: 1152dbc4df827ded3be1a57f007a6b7de12f567f
2019-05-29 01:37:03 -07:00
Vitaly Fedyunin
5b78a5eadb Memory format support for contiguous and is_contiguous (#20455)
Summary:
#19975 was separated by 2 PRs.

This one:

Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.

At this moment both functions just operate with strides and doesn't store any tensor state.

(Original RFC #19092)

-----

Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).

Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.

1.  `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.

    - Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.

        `x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.

2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.

    - `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.

Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455

Differential Revision: D15341577

Pulled By: VitalyFedyunin

fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d
2019-05-16 07:18:24 -07:00
Sebastian Messmer
ace506fb38 Dict (#20372)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20372

Implement a Dict type that allows us to abstract away from the concrete implementation used.
The API is similar to std::unordered_map, but behind the scenes we can switch to any map implementation we like. ska::flat_hash_map, google dense map, or any future map implementation with better performance.
Switching such an implementation choice does not have to break backwards compatibility of kernel code using the Dict type.

Reviewed By: zdevito

Differential Revision: D15298234

fbshipit-source-id: b5ad368a9e9516030805cd8f5f1b02e3986933c0
2019-05-14 18:37:02 -07:00
Edward Yang
c397134d6b Revert D15156384: Dict
Differential Revision:
D15156384

Original commit changeset: b9313ec4dd9a

fbshipit-source-id: 3b44f49ec4eaba692cfb2cfe46e5f98102e337d9
2019-05-10 06:11:25 -07:00
Sebastian Messmer
c92129033a Dict (#19976)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19976

Implement a Dict type that allows us to abstract away from the concrete implementation used.
The API is similar to std::unordered_map, but behind the scenes we can switch to any map implementation we like. ska::flat_hash_map, google dense map, or any future map implementation with better performance.
Switching such an implementation choice does not have to break backwards compatibility of kernel code using the Dict type.

Reviewed By: li-roy

Differential Revision: D15156384

fbshipit-source-id: b9313ec4dd9acb3b6a0035345b6ba4f2a437d1e5
2019-05-09 10:54:07 -07:00
davidriazati
18cb098588 Remove warnings on new_* constructors (#20026)
Summary:
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#20026 Remove warnings on new_* constructors**

Revert of #16770, fixes #19995
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20026

Pulled By: driazati

Differential Revision: D15171691

fbshipit-source-id: 057c3b4a9fd6086ca240007e5404a286080f04b6
2019-05-01 16:35:36 -07:00
Eric Faust
dcfb5620df Allow passing lists as trace inputs.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19580

Differential Revision: D15034978

fbshipit-source-id: d3bc32ccae1c12104f2bde43fd4700d220bb3ca9
2019-04-26 02:41:57 -07:00
Karl Ostmo
8f0603b128 C++ changes toward libtorch and libcaffe2 unification (#19554)
Summary:
* adds TORCH_API and AT_CUDA_API in places
* refactor code generation Python logic to separate
  caffe2/torch outputs
* fix hip and asan
* remove profiler_cuda from hip
* fix gcc warnings for enums
* Fix PythonOp::Kind
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19554

Differential Revision: D15082727

Pulled By: kostmo

fbshipit-source-id: 83a8a99717f025ab44b29608848928d76b3147a4
2019-04-26 01:38:10 -07:00
Zachary DeVito
6cb1b994d8 Trace directly into first-class module form. (#19722)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19722
ghimport-source-id: b024666feccb324f5ba9aae4a6301723e04d9846

Reviewed By: jamesr66a

Differential Revision: D15078535

Pulled By: zdevito

fbshipit-source-id: b866b31c1864a090c545560cbecee81e34ad2d16
2019-04-25 15:53:03 -07:00
Elias Ellison
62447a5aa3 improve err msg (#19645)
Summary:
Print out the tensor value when throwing the cannot insert tensor with grad error
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19645

Differential Revision: D15057809

Pulled By: eellison

fbshipit-source-id: 3f622ef1322a75c965e780275f1fb447e9acf38d
2019-04-24 16:22:07 -07:00
Vitaly Fedyunin
d14abe3aff Add torch.from_file function similar to the Storage.from_file, but returning tensor (#18688)
Summary:
Porting `torch.Storage.from_file(filename, shared, size)` function to `torch.from_file(filename, shared, size, dtype=torch.int)`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18688

Differential Revision: D15012644

Pulled By: VitalyFedyunin

fbshipit-source-id: 3f62ca9e414fad3847fe71b785ff97b5bdc2d2cd
2019-04-24 15:38:56 -07:00
efaust
8273b9b3cb Enforce consistent dict iteration order for trace inputs. (#19528)
Summary:
Stack:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; **#19528 [pytorch] Enforce consistent dict iteration order for trace inputs.**&nbsp;&nbsp;[💛](https://our.intern.facebook.com/intern/diff/D15023656/)

Don't iterate down unordered_maps and expect ordering. Should fix test flakiness.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19528

Differential Revision: D15023656

Pulled By: efaust

fbshipit-source-id: 91c9a31a8652fcf93ae0e942bea4cec67bb490c9
2019-04-23 23:36:48 -07:00
Michael Suo
26f1c6d4d4 Revert D14689639: [pytorch] Allow passing lists as trace inputs.
Differential Revision:
D14689639

Original commit changeset: 6dcec8a64319

fbshipit-source-id: 03a5e7c80e7f2420e33b056b5844a78d7fd41141
2019-04-20 08:50:47 -07:00
Eric Faust
2d4875b8ed Allow passing lists as trace inputs.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18636

Differential Revision: D14689639

fbshipit-source-id: 6dcec8a64319ae3c4da9a93f574a13ce8ec223a5
2019-04-19 13:37:50 -07:00
Eric Faust
593bb145ce Allow passing dicts as trace inputs. (#18092)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18092

Previously, tracing required all inputs to be either tensors,
or tuples of tensor. Now, we allow users to pass dicts as well.

Differential Revision: D14491795

fbshipit-source-id: 7a2df218e5d00f898d01fa5b9669f9d674280be3
2019-04-18 23:52:00 -07:00
Vitaly Fedyunin
1c5073fb4b Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors (#18952)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.

Now compatible with both torch scripts:
 `  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"), pin_memory=False)`
and
`  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"))`

Same checked for all similar functions `rand_like`, `empty_like` and others

It is fixed version of #18455
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18952

Differential Revision: D14801792

Pulled By: VitalyFedyunin

fbshipit-source-id: 8dbc61078ff7a637d0ecdb95d4e98f704d5450ba
2019-04-16 11:06:15 -07:00
Lu Fang
443a58e03d Export C10 operator in PyTorch Model (#18210)
Summary:
Almost there, feel free to review.

these c10 operators are exported to _caffe2 domain.

TODO:

- [x] let the onnx checker pass
- [x] test tensor list as argument
- [x] test caffe2 backend and converter
- [x] check the c10 schema can be exported to onnx
- [x] refactor the test case to share some code
- [x] fix the problem in ONNX_ATEN_FALLBACK
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18210

Reviewed By: zrphercule

Differential Revision: D14600916

Pulled By: houseroad

fbshipit-source-id: 2592a75f21098fb6ceb38c5d00ee40e9e01cd144
2019-04-08 16:06:00 -07:00
Vitaly Fedyunin
b7c830b916 Revert "Adding pin_memory kwarg to zeros, ones, empty,... (#18854)
Summary:
This reverts commit c484cf43a0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18854

Differential Revision: D14778393

Pulled By: VitalyFedyunin

fbshipit-source-id: 4b5a1f5b1c091bbc4a8e75614734cc011d26b452
2019-04-05 06:25:33 -07:00
Wanwannodao
8ca9ba17da Fix typo
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18802

Differential Revision: D14781874

Pulled By: ezyang

fbshipit-source-id: 0f94c40bd84c84558ea3329117580f6c749c019f
2019-04-04 12:46:39 -07:00
Vitaly Fedyunin
c484cf43a0 Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors. (#18455)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18455

Reviewed By: ezyang

Differential Revision: D14672084

Pulled By: VitalyFedyunin

fbshipit-source-id: 9d0997ec00f59500ee018f8b851934d334012124
2019-04-02 08:48:19 -07:00
Elias Ellison
1eee2090d4 Const trace error v2 (#18535)
Summary:
Trying to reland https://github.com/pytorch/pytorch/pull/18298
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18535

Differential Revision: D14652391

Pulled By: eellison

fbshipit-source-id: 699e30045dd5f14f0a2b98378272045a292e1e2a
2019-03-27 14:40:56 -07:00
Michael Suo
d85451c07b Revert D14584266: [pytorch][PR] Better error message for tensor with grad as constant in tracing
Differential Revision:
D14584266

Original commit changeset: 4e7850dadc78

fbshipit-source-id: 3bb3b5006e469edff984c16e0ff8d5dac2862d88
2019-03-23 02:50:54 -07:00