A performance optimization. Using `torch.addmm`, which fuses `matrix multiply + scale + add` into one op.
**Benchmark**
In a QWEN-like 0.5B model training we observed average `optimizer.step()` latency speedup: matmul ~44.5 ms -> addmm ~27.4 ms: a **1.62×** speedup.
matmul
<img width="1403" height="600" alt="Screenshot 2025-08-24 at 3 15 37 PM" src="https://github.com/user-attachments/assets/a77a68d4-da3c-473a-97f0-e6ef0a3b46d9" />
addmm
<img width="1426" height="602" alt="Screenshot 2025-08-24 at 3 13 42 PM" src="https://github.com/user-attachments/assets/e493af36-44d3-4026-9f7c-fd0f9cdbc7e5" />
**Testing**
End-to-end training:
We used a training script that pre-trains a QWEN-like model on `openwebtext-100k` dataset. We trained for one epoch and the resulting loss curves show consistency between normal matmul and addmm.
<img width="1035" height="434" alt="Screenshot 2025-08-24 at 2 56 21 PM" src="https://github.com/user-attachments/assets/b96b13e3-0a01-4908-853c-d917b41f3d75" />
Unit test:
```python
# dummy model and data
model0 = Linear(10, 10, bias=False)
model1 = copy.deepcopy(model0)
inputs = torch.randn(8, 10)
targets = torch.randn(8, 10)
loss = MSELoss()
lr = 1e-3
wd = 0.1
momentum = 0.95
opt_ref_muon = Muon(
params=model0.parameters(),
lr=lr,
weight_decay=wd,
momentum=momentum,
nesterov=nesterov,
adjust_lr_fn="original",
)
opt_exp_muon = Muon(
params=model1.parameters(),
lr=lr,
weight_decay=wd,
momentum=momentum,
nesterov=nesterov,
adjust_lr_fn="original",
use_addmm=True,
)
out_ref = model0(inputs)
loss_ref = loss(out_ref, targets)
opt_ref_muon.zero_grad()
loss_ref.backward()
opt_ref_muon.step()
out_exp = model1(inputs)
loss_exp = loss(out_exp, targets)
opt_exp_muon.zero_grad()
loss_exp.backward()
opt_exp_muon.step()
for p_ref, p_exp in zip(model0.parameters(), model1.parameters()):
torch.testing.assert_close(p_ref, p_exp)
```
shows numeric difference, but this is expected on bf16 precision:
```
Mismatched elements: 96 / 100 (96.0%)
Greatest absolute difference: 8.985400199890137e-05 at index (1, 9) (up to 1e-06 allowed)
Greatest relative difference: 0.007370449136942625 at index (0, 6) (up to 1e-05 allowed)
```
~~Introduced a flag that allows users to opt in, as there are numerical differences relative to the original implementation.~~
Update: since `addmm` fuses the math ops, there are fewer intermediate roundings and is therefore more numerically accurate compared to the original form. Based on this, we opt to make `addmm` the default and only option.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161379
Approved by: https://github.com/janeyx99
A single-device version of Muon. Algorithm refers Keller Jordan's [Muon blogpost](https://kellerjordan.github.io/posts/muon/), and optionally incorporates [Moonshot's](https://github.com/MoonshotAI/Moonlight/blob/master/Moonlight.pdf) learning rate adjustment strategy.
This implementation maintains a minimalist API and is consistent with other optimizer conventions. PyTorch team prefers to handle parameter filtering at a higher level, with the Muon optimizer performing only the msign computation for orthogonalization on all parameters it receives. Users are responsible for grouping parameters for different optimizers as needed. An example usage is shown below, and a more detailed example will be added to the [PyTorch examples](https://github.com/pytorch/examples) directory.
**Usage**
```python
model = MyModelForCausalLM
# filter out your params manually
muon_params = [...]
adamw_params = [...]
muon = Muon(
params = muon_params
lr=lr,
wd=wd,
)
adamw = AdamW(
params = adamw_params
lr=lr,
wd=wd,
)
# in training loop
loss = model(input)
loss.backward()
muon.step()
adamw.step()
muon.zero_grad()
adamw.zero_grad()
```
~~**Additional usage**~~
~~Users are also able to pass in self-defined `msign` function for orthogonalization, and learning rate adjustment function. Interface defined below:~~
```python
~~AdjustLrFn: TypeAlias = Callable[[float, torch.Size], float]~~
~~MsignFn: TypeAlias = Callable[[Tensor, BaseMsignFnConfig], Tensor]~~
```
As discussed with team and in comment, we prefer to make the interface simpler and cleaner, thus we removed the callback interface, and canonicalize the original NS algorithm for Muon. The only configs available to users are `ns_steps`, `coefficients`, and `eps`, configurable through kwargs.
By default, we use 5-step Newton-Schulz, with coefficients proposed by [Keller](https://kellerjordan.github.io/posts/muon/). We use LR adjustment proposed by [Moonshot](https://github.com/MoonshotAI/Moonlight/blob/master/Moonlight.pdf), which grafts learning rate from AdamW.
**Testing**
~~1. Unit tests: the newly introduced Muon is covered in `test/test_optim.py`. We updated the test cases to pass named parameters to the optimizer under test. Additionally, we introduced a new test case to verify that when the user provides an empty FQN list, Muon correctly falls back to AdamW behavior.~~
As discussed, in order not to complicate the codebase, we prefer not to include reference implementation into PyTorch. We also updated the interface so we don't need to test the FQN based filtering. Muon is covered by the existing `test_optim.py` unit test.
2. End-to-end test: we added a training script that pre-trains a QWEN-like model on `openwebtext-100k` dataset. We trained for one epoch and the resulting loss curve is compared against the Moonshot implementation to confirm behavioral consistency.
<img width="1102" height="472" alt="Screenshot 2025-07-29 at 1 04 12 AM" src="https://github.com/user-attachments/assets/ceab0733-497d-4070-8032-02ae7995c64c" />
**Numerics**
We evaluate our implementation with existing implementation to confirm numerical consistency.
As discussed, our implementation closely follows the algorithm described in [Keller's post](https://kellerjordan.github.io/posts/muon/), while incorporating the learning rate adjustment from [Moonlight](https://github.com/MoonshotAI/Moonlight/blob/master/Moonlight.pdf). This captures a key insight that allows users to reuse hyper-parameters tuned for `adamW`, making Muon a drop-in swap.
As expected, the numerics difference mainly comes from `adjust_lr`, a max of ~5% relative diff in an example unit test setup below.
```python
# dummy model and data
model0 = Linear(10, 10, bias=False)
model1 = copy.deepcopy(model0)
inputs = torch.randn(8, 10)
targets = torch.randn(8, 10)
loss = MSELoss()
lr = 1e-3
wd = 0.1
momentum = 0.95
opt_ref_muon = KellySingleDeviceMuon(
params=model0.parameters(),
lr=lr,
weight_decay=wd,
momentum=momentum,
)
opt_exp_muon = Muon(
params=model1.parameters(),
lr=lr,
weight_decay=wd,
momentum=momentum,
)
out_ref = model0(inputs)
loss_ref = loss(out_ref, targets)
opt_ref_muon.zero_grad()
loss_ref.backward()
opt_ref_muon.step()
out_exp = model1(inputs)
loss_exp = loss(out_exp, targets)
opt_exp_muon.zero_grad()
loss_exp.backward()
opt_exp_muon.step()
for p_ref, p_exp in zip(model0.parameters(), model1.parameters()):
torch.testing.assert_close(p_ref, p_exp)
```
As explained above, including this `adjust_lr` is preferable. This is validated by an e2e training runs on training a qwen-2-like 0.5b model, where the curves show that training with `adjust_lr` converges more effectively than without.
<img width="1179" height="464" alt="Screenshot 2025-08-18 at 10 12 33 AM" src="https://github.com/user-attachments/assets/e797d3da-c2f0-4187-b99e-5d48b7437c3c" />
**Performance**
Training for one epoch of openwebtext-100k on eight H100 GPUs with DDP:
- adamw_ddp finishes in 13.12 min
- pytorch_muon_ddp finishes in 13.45 min
Muon runs ~20s slower compared to AdamW. Assuming no other changes, Muon is *2.5%* slower than AdamW.
AdamW: Optimizer.step() takes ~13.5 ms, step time ~930 ms
<img width="726" height="590" alt="Screenshot 2025-07-29 at 1 56 14 AM" src="https://github.com/user-attachments/assets/ebcd7e1c-d129-4b20-9396-39f568edf03d" />
Muon: Optimizer.step() takes ~54 ms, step time ~960 ms
<img width="751" height="597" alt="Screenshot 2025-07-29 at 2 02 20 AM" src="https://github.com/user-attachments/assets/72f5b904-ebd5-4502-a6ff-d3e9e5a6da81" />
**Note**
We restrict the implementation to accept only 2D parameters.
An alternative approach is to allow parameters with more than two dimensions and apply orthogonalization over the last two dimensions. We opt not to go with this approach as it can be error-prone. For example, with a kernel shaped `[in_channel, height, width, out_channel]`, applying orthogonalization to the last two dimensions is not meaningful.
Since Muon is designed to operate orthogonalization on 2D matrices, preserving this assumption keeps the implementation clean and sound.
**Next Steps**
1. Add `MuP`
2. Open-source optimized triton kernel for symmetric matmul. A preliminary benchmark found 1.23x - 1.48x speedup on small - large (n = 256 -> 16384) matrices.
3. Open-source unsharded Muon co-designed with FSDP2.
****
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160213
Approved by: https://github.com/janeyx99
Functionally two decorators are very similar, but one should rely on expectedFailure as much as possible to get signal when something is fixed.
- Move `product_version` variable from `test_mps` to common_utils, but call it `MACOS_VERSION`
- Introduce `skipIfMPSOnMacOS13` to decorate the hard crashes that happens only on MacOS13 (which at this point will not get any fixes and will be deprecated soon)
- Add `device_type='mps'` to all `skipIfMPS` per https://github.com/pytorch/pytorch/issues/140560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139940
Approved by: https://github.com/janeyx99, https://github.com/huydhn
A proposal addressing Issue #1489: **Optimizer should track parameter names and not id.**
(also mentioned in here: [[RFC] Introducing FQNs/clarity eyeglasses to optim state_dict](https://dev-discuss.pytorch.org/t/rfc-introducing-fqns-clarity-to-optim-state-dict/1552)
## Summary
This PR introduces a backward-compatible enhancement where optimizers track parameter names instead of just their id.
Optimizers can be initialized with `named_parameters()` as:
```python
optimizer = optim.SGD(model.named_parameters(), lr=0.01, momentum=0.9)
```
This allows for greater clarity and ease when handling optimizers, as the parameters' names are preserved within the optimizer’s `state_dict` as:
```
state_dict =
{
'state': {
0: {'momentum_buffer': tensor(...), ...},
1: {'momentum_buffer': tensor(...), ...},
},
'param_groups': [
{
'lr': 0.01,
'weight_decay': 0,
...
'params': [0,1]
'param_names' ['layer.weight', 'layer.bias'] (optional)
}
]
}
```
Loading `state_dict` is not changed (backward-compatible) and the `param_names` key will be ignored.
## Key Features
#### Named Parameters in Optimizer Initialization:
Optimizers can accept the output of `model.named_parameters()` during initialization, allowing them to store parameter names directly.
#### Parameter Names in `state_dict`:
The parameter names are saved as a list in the optimizer’s `state_dict` with key `param_names`, alongside the `params` indices, ensuring seamless tracking of both names and parameters.
## Backward Compatibility
#### No Breaking Changes:
This change is fully backward-compatible. The added `param_names` key in the optimizer's `state_dict` is ignored when loading a state to the optimizer.
#### Customization with Hooks:
For more control, the loaded state_dict can be modified using a custom `register_load_state_dict_pre_hook`, providing flexibility for different design needs.
## Documentation Updates
Please refer to the documentation changes for more details on how this feature is implemented and how it can be used effectively.
## Solution Example:
A suggested solution to the problem mentioned in #1489, for the same parameters but in a different order.
The following `register_load_state_dict_pre_hook` should be added to the optimizer before loading to enable loading the state dict :
```python
def adapt_state_dict_ids(optimizer, state_dict):
# assuming a single param group.
current_state_group = optimizer.state_dict()['param_groups'][0]
loaded_state_group = state_dict['param_groups'][0]
# same number of params, same names, only different ordering
current_state_name_to_id_mapping = {} # mapping -- param_name: id
for i, name in enumerate(current_state_group['param_names']):
current_state_name_to_id_mapping[name] = current_state_group['params'][i]
# changing the ids of the loaded state dict to match the order of the given state dict.
for i, name in enumerate(current_state_group['param_names']):
loaded_state_group['params'][i] = current_state_name_to_id_mapping[name]
return state_dict
```
In this code, the loaded `state_dict` ids are adapted to match the order of the current optimizer `state_dict`.
Both the previous and the current optimizers are required to be initiated with `named_parameters()` to have the 'param_names' key in the dict.
### Note
This is my first contribution to PyTorch, and I wish to receive feedback or suggestions for improvement.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134107
Approved by: https://github.com/janeyx99
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
This PR adds the foreach impl for Adafactor knowing that there are many ways to improve its runtime perf today (by adding more foreach support). After this PR:
- we have a foreach flag for Adafactor
- It is NOT the default. Why not? It is only slightly faster + uses O(n) more memory where n is the number of params in your max param group. People tend to use Adafactor for memory efficiency.
Next steps:
- make torch.compile possible on it
- make it faster (by adding more foreach apis)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132336
Approved by: https://github.com/albanD
ghstack dependencies: #133360
#109581
At this point, the vanilla implementation (the default) is good.
Docs: https://docs-preview.pytorch.org/pytorch/pytorch/129905/generated/torch.optim.Adafactor.html#torch.optim.Adafactor
Specifically, the impl in this PR, which attempts to replicate the paper,
```
optim = torch.optim.Adafactor([weight])
```
is close enough to https://pytorch-optimizers.readthedocs.io/en/latest/optimizer/#pytorch_optimizer.AdaFactor
```
optim_c = AdaFactor([weight], betas=(0, 0.999), scale_parameter=False)
```
is close enough to https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adafactor
```
optim = keras.optimizers.Adafactor(learning_rate=0.01)
```
The three results respectively for the same randomly generated weights:
```
# ours
tensor([[ 0.3807594, -0.3912092],
[ 0.0762539, 0.5377805],
[ 0.2459473, 0.4662207]])
# pytorch-optimizer
tensor([[ 0.3807592, -0.3912172],
[ 0.0762507, 0.5377818],
[ 0.2459457, 0.4662213]])
# keras
array([[ 0.38076326, -0.39121315],
[ 0.0762547 , 0.5377859 ],
[ 0.24594972, 0.46622536]], dtype=float32)
```
This gives me confidence to move forward in speeding up the implementation now that a baseline has been established. If you're curious about differences:
* keras assigns step_size (rho_t in their code) to `min(lr, 1 / sqrt(step)` whereas the OG impl uses a hardcoded 0.01 instead of lr. We do the same thing as keras, but our lr default is 0.01.
* We differ from the pytorch-optimizers default in that our default will not track momentum (thus `beta1=0`) and we do not apply parameter scaling.
<details>
Keras collab: https://colab.research.google.com/drive/1i3xF8ChL7TWKJGV_5v_5nMhXKnYmQQ06?usp=sharing
My script repro:
```
import torch
from pytorch_optimizer import AdaFactor
torch.set_printoptions(precision=7)
weight = torch.tensor([[ 0.37697506, -0.39500135],
[ 0.07246649, 0.53399765],
[ 0.24216151, 0.46243715]], dtype=torch.float32)
# bias = torch.tensor([0, 0], dtype=torch.float32)
weight.grad = torch.tensor([[-0.5940447, -0.7743838],
[-0.5940447, -0.7743838],
[-0.5940447, -0.7743838]], dtype=torch.float32)
# bias.grad = torch.tensor([-2.5027974, 1.5422692], dtype=torch.float32)
weight_c = weight.clone()
weight_c.grad = weight.grad.clone()
optim = torch.optim.Adafactor([weight])
optim.step()
print(weight)
optim_c = AdaFactor([weight_c], betas=(0, 0.999), scale_parameter=False)
optim_c.step()
print(weight_c)
```
<details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129905
Approved by: https://github.com/albanD
Summary:
- Updated SparseAdam to run test_state_dict_deterministic unit test.
- Made gradients sparse while keeping weights dense in the above test.
Test Plan:
- Ran test_optim.py locally.
Fixes#116507
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130645
Approved by: https://github.com/janeyx99
This continues the full deprecation after https://github.com/pytorch/pytorch/pull/114425. It's been 6 months! And I'm fairly certain no one is going to yell at me as this patch is not really used.
------
# BC Breaking note
As of this PR, SparseAdam will become consistent with the rest of our optimizers in that it will only accept containers of Tensors/Parameters/param groups and fully complete deprecation of this path. Hitherto, the SparseAdam constructor had allowed raw tensors as the params argument to the constructor. Now, if you write the following code, there will be an error similar to every other optim: "params argument given to the optimizer should be an iterable of Tensors or dicts"
```
import torch
param = torch.rand(16, 32)
optimizer = torch.optim.SparseAdam(param)
```
Instead you should replace the last line with
```
optimizer = torch.optim.SparseAdam([param])
```
to no longer error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127081
Approved by: https://github.com/soulitzer
Is this supposed to be bitwise identical? Wasn't sure how to interpret the comment but it seems to be giving mismatches like:
```
Mismatched elements: 1 / 2 (50.0%)
Greatest absolute difference: 4.6372413635253906e-05 at index (1,) (up to 1e-05 allowed)
Greatest relative difference: 3.4600801882334054e-05 at index (1,) (up to 1.3e-06 allowed)
To execute this test, run the following from the base repo dir:
python test/test_optim.py -k test_complex_2d_LBFGS_cpu_complex64
```
on Neoverse-N2 SBSA ARM CPUs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126358
Approved by: https://github.com/lezcano, https://github.com/janeyx99
This PR is meant to address issue #123451, more specifically, the ```test_graph_optims``` and ```test_graph_scaling_fused_optimizers``` functions in ```test_cuda.py``` have been updated so that they now use the new OptimizerInfo infrastructure.
Lintrunner passed:
```
$ lintrunner test/test_cuda.py
ok No lint issues.
```
Tests passed:
```
>python test_cuda.py -k test_graph_optims
Ran 19 tests in 7.463s
OK (skipped=9)
>python test_cuda.py -k test_graph_scaling_fused_optimizers
Ran 6 tests in 2.800s
OK (skipped=3)
```
Both the functions have been moved to the newly created TestCase class ```TestCudaOptims```. The test is mostly the same except the ```@optims``` decorator is used at the top of the function to implicitly call the function using each of the optimizers mentioned in the decorator instead of explicitly using a for loop to iterate through each of the optimizers.
I was unable to use the ```_get_optim_inputs_including_global_cliquey_kwargs``` to get all kwargs for each of the optimizers since some of the kwargs that are used in the original ```test_graph_optims``` function are not being returned by the new OptimizerInfo infrastructure, more specifically, for the ```torch.optim.rmsprop.RMSprop``` optimizer, the following kwargs are not returned whenever ```_get_optim_inputs_including_global_cliquey_kwargs``` is called:
```
{'foreach': False, 'maximize': True, 'weight_decay': 0}
{ 'foreach': True, 'maximize': True, 'weight_decay': 0}
```
I ran into the same issue for ```test_graph_scaling_fused_optimizers```, for the ```torch.optim.adamw.AdamW``` optimizer, whenever ```optim_info.optim_inputs_func(device=device)``` was called, the following kwarg was not returned:
```
{'amsgrad': True}
```
Due to this issue, I resorted to using a dictionary to store the kwargs for each of the optimizers, I am aware that this is less than ideal. I was wondering whether I should use the OptimizerInfo infrastructure to get all the kwargs regardless of the fact that it lacks some kwargs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125127
Approved by: https://github.com/janeyx99
> previous: Originally, the variables `new_eta` and `new_mu` would be constructed `len(grouped_mus)` times, but each of their values is the same and won't be changed. Therefore, it can be simplified using Python list multiplication, which only constructs one tensor.
- [X] Ill assumption that every param will have the same step.
- [x] DIfferent implementation between `foreach=Ture` and `foreach=False`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125440
Approved by: https://github.com/janeyx99