**Motivation:**
We try to make torch.cond use torch.compile automatically so that we could error out when there is side-effects in the branches and correctly handle the closures.
Before this PR, we have a warning if we don't turn on a config raise_on_backend_change (turning it on gives us an error) for the following code:
```python
def foo()
# Inside torch.cond, we'd like to do something like
torch.compile(foo, backend="eager", fullgraph=True)(...)
...
# Users may then call torch.compile somewhere else.
# Dynamo will use the cached code of foo for "eager" backend
# but we expect dynamo to recompile with "inductor" backend.
torch.compile(foo, backend="inductor")(...)
```
This PR adds a BACKEND_MATCH guard. Effectively, it implements a per-backend cache. In the above example, the cached code for "eager" won't work for "inductor" due to guard check failures and the second torch.compile will do a re-compilation. In the future, it might be useful to have something like a configuration guard that guards against dynamo configuration changes across different compiles (e.g. compile a function with fullgraph=False then compile it again with fullgraph=True).
**Implementation:**
1. We add a guarded_backend_cache and check the most_recent_backend against the backend associated with cached code. We also remove the raise_on_backend_change flag.
Note: More lines are printed for debug log due to newly added context manager and guard adds .
**Test Plan:**
Removed original tests that raise on different backend and add a new test to test whether the BACKEND_MATCH guard can guard against backend change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107337
Approved by: https://github.com/jansel
Fix several issues with `torch._numpy.random` functions on eager
1. actually return scalars when `size is None`
2. fix dispatch with USE_NUMPY_STREAM
3. make tnp.random functions composable: make numpy functions receive numpy arguments, not `tnp.ndarray`s
4. fix random.shuffle for e.g. lists
The main need for this gymnastics is due to `np.random` functions returning an ndarray or python scalar depending on the `size` argument. We decided a while ago to replicate this behavior in `tnp.random` and not elsewhere where we always return 0D arrays instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108944
Approved by: https://github.com/lezcano
This PR introduces record and replay functionality for `ShapeEnv` instances. In short,
throughout the execution of a program, we record events (e.g. function calls that modify
its state) so that, in the future, we are able to reproduce any intermediary state of the
instance.
In summary, this PR introduces the following changes (they mostly belong to
_symbolic_shapes.py_ unless otherwise stated):
- Create `ShapeEnvEvent` class for recording function calls + arguments
- Create `record_shapeenv_event` decorator and decorate every function that changes the
state of a `ShapeEnv`: it creates an appropriate event and add it to the available
ShapeEnv instance (sometimes it has to extract from `SymTypes`).
- Create `SymNode.with_shape_env` convenient function for replacing `ShapeEnv` references
- Wraps `ShapeEnv` initialization method: so that we also save the exact way a `ShapeEnv`
was constructed, i.e. arguments
- Introduces a way to compare two `ShapeEnv` instances, defining a concept of state for
that class. In short, the state of `ShapeEnv` is every variable that may change the
execution flow
- Create `check_shape_env_recorded_events` dynamo configuration for enabling the check for
equality the state of `ShapeEnv` with another one that was constructed by replaying all
the recorded events. This check takes place inside `produce_guards`
- Create `replay_shape_env_events` function for replaying given events. It assumes the
first event is `ShapeEnv` initialization function
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107989
Approved by: https://github.com/ezyang
**Motivation:**
We try to make torch.cond use torch.compile automatically so that we could error out when there is side-effects in the branches and correctly handle the closures.
Before this PR, we have a warning if we don't turn on a config raise_on_backend_change (turning it on gives us an error) for the following code:
```python
def foo()
# Inside torch.cond, we'd like to do something like
torch.compile(foo, backend="eager", fullgraph=True)(...)
...
# Users may then call torch.compile somewhere else.
# Dynamo will use the cached code of foo for "eager" backend
# but we expect dynamo to recompile with "inductor" backend.
torch.compile(foo, backend="inductor")(...)
```
This PR adds a BACKEND_MATCH guard. Effectively, it implements a per-backend cache. In the above example, the cached code for "eager" won't work for "inductor" due to guard check failures and the second torch.compile will do a re-compilation. In the future, it might be useful to have something like a configuration guard that guards against dynamo configuration changes across different compiles (e.g. compile a function with fullgraph=False then compile it again with fullgraph=True).
**Implementation:**
1. We add a guarded_backend_cache and check the most_recent_backend against the backend associated with cached code. We also remove the raise_on_backend_change flag.
2. Then newly added context manager and guard adds more lines for debug log so we change the uppper limit from 50 to 55.
**Test Plan:**
Removed original tests that raise on different backend and add a new test to test whether the BACKEND_MATCH guard can guard against backend change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107337
Approved by: https://github.com/jansel
**This PR is a 99% copy paste of Sam Gross** (@colesbury) work at https://github.com/pytorch/pytorch/pull/100642. Copied from there
--------
The NN_MODULE guard now subsumes guards on Module attributes. The check_fn will fail if the module attributes are changed (such as Module.training), parameters, submodules, and buffers are added or removed, and if fields are changed on the type itself.
This gives up specificity in the guard check -- if any field is changed the check_fn fails -- for faster overall checks.
-----
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108528
Approved by: https://github.com/ezyang
This PR wraps `InstructionTranslator` run with a try-catch block so as to run the
translation validation (TV) if it ends up raising an error.
In this context, we run TV so as to catch simplification errors. These may turn
`ShapeEnv.divisible` and `ShapeEnv.replacements` incorrect.
For example: #101173 describes a SymPy simplification bug that doesn't reach TV, since
it's run only in the end of the tracing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106645
Approved by: https://github.com/ezyang
RFC: https://github.com/pytorch/rfcs/pull/54
First commit is the contents of https://github.com/Quansight-Labs/numpy_pytorch_interop/
We have already been using this in core for the last few months as a external dependency. This PR pulls all these into core.
In the next commits, I do a number of things in this order
- Fix a few small issues
- Make the tests that this PR adds pass
- Bend backwards until lintrunner passes
- Remove the optional dependency on `torch_np` and simply rely on the upstreamed code
- Fix a number dynamo tests that were passing before (they were not tasting anything I think) and are not passing now.
Missing from this PR (but not blocking):
- Have a flag that deactivates tracing NumPy functions and simply breaks. There used to be one but after the merge stopped working and I removed it. @lezcano to investigate.
- https://github.com/pytorch/pytorch/pull/106431#issuecomment-1667079543. @voznesenskym to submit a fix after we merge.
All the tests in `tests/torch_np` take about 75s to run.
This was a work by @ev-br, @rgommers @honno and I. I did not create this PR via ghstack (which would have been convenient) as this is a collaboration, and ghstack doesn't allow for shared contributions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106211
Approved by: https://github.com/ezyang
This PR adds a new configuration that enables shapes of torch.nn.Parameter to be treated as dynamic in order to avoid extensive recompilation when Paramters are used instead of Tensor.
This features addresses part of issue #105279
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105855
Approved by: https://github.com/ezyang
D47969512 was the original diff to revert this, but the diff train doesn't work well, so I have to split it into two part: this OSS PR and another separate diff to revert the fbcode change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106562
Approved by: https://github.com/angelayi
Summary:
We are working toward full model compilation, where when compilation error happens, we just fall back to eager mode rather than error out.
But at the same time, we should fix these issues if they are bugs. We will:
* 1/ log warnings in OSS;
* 2/ log warnings and write them into Scuba in fbcode;
to prevent us from ignoring these issues.
Test Plan: Manual test
Differential Revision: D47506314
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105307
Approved by: https://github.com/jansel
Fixes: #105143
In summary, the changes are:
- Check if Z3 is installed when the module is loaded
- Naming consistently as "translation validation" (not "validator")
- Skipping tests if Z3 is not installed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105168
Approved by: https://github.com/ezyang
As of now, translation validation runs to its completion. However, Z3 is time
consuming. PR #104464, for example, disables translation validation for a few benchmarks.
Instead, this PR introduces a timeout for translation validation. In that case, Z3 will
return `unknown`, since it wasn't able to prove or disprove the assertions. Then, we log
it as a warning, but don't stop execution.
Here's a summary of the changes:
- Added an environment variable for turning translation validation on and off
- Added an environment variable for setting the translation validation timeout
- Possibly reverts the changes in #104464
- ~~Move from "QF_NRA" to "QF_NIRA" logic~~
- ~~It makes more sense, given the nature of the problems~~
- "QF_NRA" seems to solve more instances of _dynamo/test_dynamic_shapes.py_
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104654
Approved by: https://github.com/ezyang
Some notes:
* I now manually turn off `_generate` jobs from running with cudagraphs, as it is unrealistic to expect to cudagraph autoregressive generation up to max sequence length, this would imply compiling the entire unrolled sequence generation. Concretely, cm3leon_generate was timing out post this change, likely due to the compile time slowdown of dynamic shapes ON TOP OF accidentally unrolling all the loops
* A few torch._dynamo.reset tactically inserted to force recompiles on tests that expected it
* expectedFailureAutomaticDynamic flip into patching automatic_dynamic_shapes=False
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103623
Approved by: https://github.com/voznesenskym
This PR introduces a translation validator for dynamo guards. In summary, it verifies
whether the guards issued as Python code are sound, w.r.t the initial guards.
The main changes in this PR are:
- Create an FX graph for dynamic shapes
- Translate "the original" guards from the FX graph to Z3
- Check if the guards produced by `produce_guards` are sound w.r.t. the ones from the FX graph
gh-stack version of the PR #101146.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102563
Approved by: https://github.com/ezyang
Summary:
Replace _dynamo.config with an object instead of module
Current usage patterns of setting and reading fields on config will work
unchanged.
Only changes needed going forward:
1. import torch._dynamo.config will not work. However, just doing
import torch._dynamo is sufficient to access dynamo config
as torch._dynamo.config.
2. Files inside of _dynamo folder need to access config via
from torch._dynamo.config_util import config instead of
from torch._dynamo import config. Because _dynamo/__init__.py
imports some of the files so it would be circular import.
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags:
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96455
Approved by: https://github.com/jansel
This PR adds support for tracing autograd.Function with grad.
A few important bullet points outlining our approach:
1) Our goal is to verify soundness in order to add a call_function to the autograd.Function's `apply` to the graph.
2) We achieve (1) by either verifying soundness or rejecting soundness, by ensuring that both forward and backward of the autograd.Function are sound.
3) For the forward, if we verify soundness, we install its guards into the graph.
4) For the backward, if we verify soundness, we throw it out. However, backwards soundness verification is more onerous, and has a config driven set of banned attrs and methods for tensors.
1-4 above are achieved by turning the forward and backward into UserDefinedFunctionVariables, and inlining through them, relying on dynamo's soundness detection. If we graph break in these, we raise and treat them as unsound. As noted above, backwards is stricter yet.
For the tracing, the safety comes from dynamo's HigherOrderOperator system. That system ensures that not only do we trace soundly, but that no new variables are lifted into inputs during the tracing, and that the forward and backwards are entirely self contained.
Whenever we reject a function as unsound, we restore back, as usual.
Due to some limitations in the lifting logic, we have an escape hatch we implemented for tensors that are known in forward, but cross into backwards through save_tensors (save) /saved_tensors (load). We escape hatch here to avoid having the known saved tensors coming from forward end up being accidentally treated as lifted variables (and rejected). This is sound, but a little hacky feeling.
Additionally, due to some limitations in fx node removal, combined with how we produce subgraphs for the traces installed from HigherOrderOperators, we had to improve our node removal logic. In the event of a restore, we remove the old nodes from the graph, as usual in dynamo. However, because the references to these nodes may exist in subgraphs, we traverse any nodes users and remove them first if and only if they are in another graph. This is always sound, because removal should only be downstream of restoration at this point.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99483
Approved by: https://github.com/zou3519
The changes:
* Add config knob `same_two_models_use_fp64` for toggling whether or not to use fp64
* Add a test showing that RMSE is superior to atol/rtol
* Add `--strict-accuracy` options, which allows for testing against integral/boolean accuracy. Regular accuracy by default now ONLY. There's a test which exercises this, it's a little delicate but I had trouble thinking of a good test otherwise.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100447
Approved by: https://github.com/voznesenskym
Summary:
This diff is reverting D45387167
D45387167: Basic dynamo support for traceable collectives (#94440) by wconstab has been identified to be causing the following test or build failures (internal)
If you believe this diff has been generated in error you may Commandeer and Abandon it.
Test Plan: NA
Reviewed By: s4ayub
Differential Revision: D45448312
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100424
Approved by: https://github.com/rohan-varma, https://github.com/kumpera
Issue: #93684
# Problem
Reduce graph breaks when dynamo compiles python functions containing numpy functions and ndarray operations.
# Design (as I know it)
* Use torch_np.ndarray(a wrapper of tensor) to back a `VariableTracker`: `NumpyTensorVariable`.
* Translate all attributes and methods calls, on ndarray, to torch_np.ndarray equivalent.
This PR adds `NumpyTensorVariable` and supports:
1. tensor to ndarray, ndarray to tensor
2. numpy functions such as numpy.meshgrid()
3. ndarray attributes such as `itemsize`, `stride`
Next PR will handle returning `np.ndarray` and add support for ndarray methods
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95849
Approved by: https://github.com/ezyang