### Description
Across PyTorch's docstrings, both `callable` and `Callable` for variable types. The Callable should be capitalized as we are referring to the `Callable` type, and not the Python `callable()` function.
### Testing
There shouldn't be any testing required.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82487
Approved by: https://github.com/albanD
Generator comprehensions with any/all are less verbose and potentially help to save memory/CPU : https://eklitzke.org/generator-comprehensions-and-using-any-and-all-in-python
To make JIT work with this change, I added code to convert GeneratorExp to ListComp. So the whole PR is basically NoOp for JIT, but potentially memory and speed improvement for eager mode.
Also I removed a test from test/jit/test_parametrization.py. The test was bad and had a TODO to actually implement and just tested that UnsupportedNodeError is thrown, and with GeneratorExp support a different error would be thrown.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78142
Approved by: https://github.com/malfet, https://github.com/albanD
Summary:
Fixes : https://github.com/pytorch/pytorch/issues/5804
In the paper : https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ Timothy Dozat suggested a new optimization algorithm with an essence of combination of NAG and Adam algorithms.
It is known that the idea of momentum can be improved with the Nesterov acceleration in optimization algorithms, and Dozat is investigating to apply this idea to momentum component of Adam algorithm. Author provided experiment evidence in their work to show excellence of the idea.
In this PR we are implementing the proposed algorithm NAdam in the mentioned paper. Author has a preliminary work http://cs229.stanford.edu/proj2015/054_report.pdf where he shows the decay base constant should be taken as 0.96 which we also followed the same phenomenon here in this implementation similar to Keras. Moreover, implementation / coding practice have been followed similar to Keras in some other places as well:
f9d3868495/tensorflow/python/keras/optimizer_v2/nadam.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59009
Reviewed By: gchanan, vincentqb
Differential Revision: D29220375
Pulled By: iramazanli
fbshipit-source-id: 4b4bb4b15f7e16f7527f368bbf4207ed345751aa