Commit Graph

71 Commits

Author SHA1 Message Date
Kurt Mohler
ee28b865ee Deprecate TypedStorage, its derived classes, and all of their public methods (#85303)
Part of #85302

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85303
Approved by: https://github.com/ezyang
2022-11-08 18:11:01 +00:00
Kurt Mohler
14d0296e5c Rename _Typed/_UntypedStorage to Typed/UntypedStorage and update docs (#82438)
### Description

Since the major changes for `_TypedStorage` and `_UntypedStorage` are now complete, they can be renamed to be public.

`TypedStorage._untyped()` is renamed to `TypedStorage.untyped()`.

Documentation for storages is improved as well.

### Issue
Fixes #82436

### Testing
N/A

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82438
Approved by: https://github.com/ezyang
2022-07-30 19:37:08 +00:00
ProGamerGov
357b7d589c Fix docstring inconsistencies: string -> str, boolean -> bool (#82410)
### Description

Throughout the PyTorch docs and codebase, the `string` type in docstrings is referred to by two separate names. This leads to inconsistent docs, like you can see here: https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html#torch.nn.Conv3d

This PR fixes this issue by ensuring that all mentions of the string type in docstrings, are using the same format that Sphinx generates hyperlinks for.

### Testing
No testing should be required for this change

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82410
Approved by: https://github.com/jbschlosser
2022-07-28 21:29:57 +00:00
PyTorch MergeBot
3c9479dc30 Revert "FIX make sure we import the correct object from multiprocessing (#53282)"
This reverts commit e103d6af3d.

Reverted https://github.com/pytorch/pytorch/pull/53282 on behalf of https://github.com/janeyx99 due to Sorry, reverting as this breaks 10.2 tests on trunk e103d6af3d
2022-07-20 20:28:39 +00:00
tomMoral
e103d6af3d FIX make sure we import the correct object from multiprocessing (#53282)
Fixes #44687.

The issue was that the Process object is not the one from the `_default_context` which should be `loky` when nesting `loky` calls.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53282
Approved by: https://github.com/VitalyFedyunin
2022-07-20 16:52:03 +00:00
Elias Ellison
1058b47562 Weak-ref-ify MetaConverter and FakeTensorConverter (#80544)
Make `MetaConverter` and `FakeTensorConverter` hold weak references to their memoized tensors, and also have `MetaConverter` hold weak reference to Tensor storage. Otherwise it can be tricky for users to make sure all existing FakeTensors or FakeTensorModes are deleted which otherwise will leak memory.

I ran into https://github.com/pytorch/pytorch/issues/7733 which I was able to get around with the following (see comment from code):

```
# torch.Tensors cannot be used as a key in a dictionary
# because they define a custom __eq__ function which when used
# to resolve hash collisions will throw when comparing tensors:
# "RuntimeError: bool value of Tensor with more than one value is ambiguous."
# To avoid that, we use an object which will hold a Tensor and use
# its id for both hashing and equality.
# In order to use this as a weak key reference, we cannot
# simply use weakref.WeakKeyDictionary because the newly constructed
# WeakTensorRefKey only use would be a dictionary so it would have no strong
# references.
# To get around this issue, we can use it as a normal key, and then set
# `weakref.finalize` to delete the key when its contained tensor dies.
```

While for the tensor memo we can set a `weakref.finalize` callback that will remove the corresponding `WeakTensorRefKey` from the tensor memo, at the point that this callback is invoked the tensor storage is not yet deallocated.. See comment from code:

```
# [expired-storages]
# NB: even though the tensor has died,
# the deallocation of its storage can take longer,
# even when the storage has no other uses/views.
# In this case, the StorageWeakRef object will be kept alive
# longer than it needs to be, however the storage itself
# will be deallocated. We retain the possibly dead storages
# and periodically check if any of them are expired and
# can be freed.
```

partial fix for https://github.com/pytorch/torchdynamo/issues/468
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80544
Approved by: https://github.com/ezyang
2022-06-29 23:36:35 +00:00
Kurt Mohler
cecb2ad95e Restore old names for private funcs in legacy storages (#77861)
Followup from #75459

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77861
Approved by: https://github.com/ezyang
2022-05-20 02:03:34 +00:00
Kurt Mohler
aea6e2c396 Merge torch.cuda._UntypedStorage into torch._UntypedStorage (#75459)
Fixes #74933

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75459
Approved by: https://github.com/ezyang
2022-05-19 13:54:39 +00:00
Kurt Mohler
79ddc72b85 Virtualize <type>Storage classes (#66970)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/66228

cc ezyang bhosmer smessmer ljk53 bdhirsh

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66970

Reviewed By: bdhirsh

Differential Revision: D33245612

Pulled By: ezyang

fbshipit-source-id: 4c61c2cb029e2b94b0e68927c377d3e1c358dd7c
(cherry picked from commit d29fcdfb4bc2cc17b1795d4349e4b56fa0d1cf12)
2022-03-22 23:44:48 +00:00
Kurt Mohler
8e7fe87630 Rename Typed/UntypedStorage to _Typed/_UntypedStorage (#72540)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/72540

Reviewed By: jbschlosser

Differential Revision: D34216823

Pulled By: bdhirsh

fbshipit-source-id: 1bc9930ab582771ebf02308e035576cd1a0dbe47
(cherry picked from commit 329238f612)
2022-02-15 23:53:01 +00:00
epwalsh
14d3d29b16 make ProcessException pickleable (#70118)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/70116

Happy to add tests if you let me know the best place to put them.

cc VitalyFedyunin

Pull Request resolved: https://github.com/pytorch/pytorch/pull/70118

Reviewed By: malfet

Differential Revision: D33255899

Pulled By: ejguan

fbshipit-source-id: 41d495374182eb28bb8bb421e890eca3bddc077b
2021-12-30 09:09:55 -08:00
Kurt Mohler
5883523c1d Remove dtype from torch.Storage and use only torch.ByteStorage (#62030)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030

Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible

Fixes https://github.com/pytorch/pytorch/issues/47442

* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls.  `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
 To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.

Original pull request: https://github.com/pytorch/pytorch/pull/59671

Reviewed By: soulitzer, ngimel

Differential Revision: D29466819

Pulled By: ezyang

fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
2021-10-05 13:50:34 -07:00
Kaushik B
ba07aaf211 Fix typo in warning for spawn method (#57927)
Summary:
Fix typo in warning for spawn method

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57927

Reviewed By: suo

Differential Revision: D28326390

Pulled By: bdhirsh

fbshipit-source-id: b0c12b1020d713865687f94f28ab2873ae260c23
2021-05-10 13:12:38 -07:00
Vasiliy Alekseev
bac4cfd54d Fix mp serialization for integer nn.Parameter on CUDA (#56529)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/56342

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56529

Reviewed By: albanD

Differential Revision: D27896094

Pulled By: ngimel

fbshipit-source-id: fe817781eb7139ea57c78acfd56e7c11b61eb4ed
2021-04-22 16:21:04 -07:00
Sam Estep
4753100a3b Un-ignore F403 in .flake8 (#55838)
Summary:
Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html

This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files).

This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838

Test Plan: CI. You can also run `flake8` locally.

Reviewed By: jbschlosser

Differential Revision: D27724232

Pulled By: samestep

fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
2021-04-13 09:24:07 -07:00
Robert Gmyr
93bbbeccf7 Make SharedCache thread-safe (#53750)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/53731

Make SharedCache thread-safe by using explicit locks instead of relying on atomicity of certain Python operations

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53750

Reviewed By: malfet

Differential Revision: D27304793

Pulled By: albanD

fbshipit-source-id: 7c62babe4357bed57df3056fbda6801fb6168846
2021-03-25 06:35:03 -07:00
Richard Barnes
b89827b73f Drop unused imports (#49972)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49972

From
```
./python/libcst/libcst codemod remove_unused_imports.RemoveUnusedImportsWithGlean --no-format caffe2/
```

Test Plan: Standard sandcastle tests

Reviewed By: xush6528

Differential Revision: D25727352

fbshipit-source-id: 6b90717e161aeb1da8df30e67d586101d35d7d5f
2021-01-13 12:26:17 -08:00
Hugo van Kemenade
473e78c0fa Remove redundant code for unsupported Python versions (#49486)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49486

Remove code for Python 3.5 and lower.

There's more that can be removed/modernised, but sticking mainly to redundant version checks here, to keep the diff/PR smaller.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46579

Reviewed By: zou3519

Differential Revision: D24453571

Pulled By: ezyang

fbshipit-source-id: c2cfcf05d6c5f65df64d89c331692c9aec09248e
2021-01-06 12:45:46 -08:00
Samuel Marks
e6779d4357 [*.py] Rename "Arguments:" to "Args:" (#49736)
Summary:
I've written custom parsers and emitters for everything from docstrings to classes and functions. However, I recently came across an issue when I was parsing/generating from the TensorFlow codebase: inconsistent use of `Args:` and `Arguments:` in its docstrings.

```sh
(pytorch#c348fae)$ for name in 'Args:' 'Arguments:'; do
    printf '%-10s %04d\n' "$name" "$(rg -IFtpy --count-matches "$name" | paste -s -d+ -- | bc)"; done
Args:      1095
Arguments: 0336
```

It is easy enough to extend my parsers to support both variants, however it looks like `Arguments:` is wrong anyway, as per:

  - https://google.github.io/styleguide/pyguide.html#doc-function-args @ [`ddccc0f`](https://github.com/google/styleguide/blob/ddccc0f/pyguide.md)

  - https://chromium.googlesource.com/chromiumos/docs/+/master/styleguide/python.md#describing-arguments-in-docstrings @ [`9fc0fc0`](https://chromium.googlesource.com/chromiumos/docs/+/9fc0fc0/styleguide/python.md)

  - https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html @ [`c0ae8e3`](https://github.com/sphinx-contrib/napoleon/blob/c0ae8e3/docs/source/example_google.rst)

Therefore, only `Args:` is valid. This PR replaces them throughout the codebase.

PS: For related PRs, see tensorflow/tensorflow/pull/45420

PPS: The trackbacks automatically appearing below are sending the same changes to other repositories in the [PyTorch](https://github.com/pytorch) organisation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49736

Reviewed By: albanD

Differential Revision: D25710534

Pulled By: soumith

fbshipit-source-id: 61e8ff01abb433e9f78185c2d1d0cbd7c22c1619
2020-12-28 09:34:47 -08:00
Guilherme Leobas
cf92b0f3a0 add type annotations to multiprocessing module (#47756)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47757

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47756

Reviewed By: malfet

Differential Revision: D24970773

Pulled By: ezyang

fbshipit-source-id: b0b9edb9cc1057829c6320e78174c6d5f7a77477
2020-11-16 13:05:49 -08:00
Chester Liu
17a6bc7c1b Cleanup unused code for Python < 3.6 (#47822)
Summary:
I think these can be safely removed since the min version of supported Python is now 3.6

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47822

Reviewed By: smessmer

Differential Revision: D24954936

Pulled By: ezyang

fbshipit-source-id: 5d4b2aeb78fc97d7ee4abaf5fb2aae21bf765e8b
2020-11-13 21:37:01 -08:00
Aliaksandr Ivanou
3ffd2af8cd Add exception classification to torch.multiprocessing.spawn (#45174)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45174

Introduce different types of exceptions that map to different failures
of torch.multiprocessing.spawn. The change introduces three different exception types:
ProcessRaisedException - occurs when the process initiated by spawn raises an exception
ProcessExitedException - occurs when the process initiated by spawn exits
The following logic will allow frameworks that use mp.spawn to categorize failures.
This can be helpful for tracking metrics and enhancing logs.

Test Plan: Imported from OSS

Reviewed By: taohe

Differential Revision: D23889400

Pulled By: tierex

fbshipit-source-id: 8849624c616230a6a81158c52ce0c18beb437330
2020-10-09 12:59:41 -07:00
Xiang Gao
20ac736200 Remove py2 compatible future imports (#44735)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44735

Reviewed By: mruberry

Differential Revision: D23731306

Pulled By: ezyang

fbshipit-source-id: 0ba009a99e475ddbe22981be8ac636f8a1c8b02f
2020-09-16 12:55:57 -07:00
David Reiss
e75fb4356b Remove (most) Python 2 support from Python code (#35615)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35615

Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up a lot of cruft that we put in place to support it.
These changes were all done manually, and I skipped anything that seemed
like it would take more than a few seconds, so I think it makes sense to
review it manually as well (though using side-by-side view and ignoring
whitespace change might be helpful).

Test Plan: CI

Differential Revision: D20842886

Pulled By: dreiss

fbshipit-source-id: 8cad4e87c45895e7ce3938a88e61157a79504aed
2020-04-22 09:23:14 -07:00
Kiuk Chung
7314f1c281 [torch/multiprocessing] Update documentation indicating that start_method is ignored for mp.spawn() (#33070)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33070

`start_method` parameter is intentionally ignored for `mp.spawn()`. Document this fact and point the user to `start_processes` if they want to use a different `start_method`.

Test Plan:
Warning message looks like:
```
main.py:8: UserWarning: This method only supports start_method=spawn (got: fork).
To use a different start_method use:
         torch.multiprocessing.start_process(...)
  warnings.warn(msg)
```

Reviewed By: ailzhang

Differential Revision: D19780235

fbshipit-source-id: 4599cd18c3ba6cc401810efe4f390290ffa8023b
2020-02-07 15:26:00 -08:00
Brian Wignall
f326045b37 Fix typos, via a Levenshtein-type corrector (#31523)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos, with https://github.com/bwignall/typochecker to help automate the checking.

Uses an updated version of the tool used in https://github.com/pytorch/pytorch/pull/30606 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31523

Differential Revision: D19216749

Pulled By: mrshenli

fbshipit-source-id: 7fd489cb9a77cd7e4950c1046f925d57524960ea
2020-01-17 16:03:19 -08:00
peterjc123
6486bdfb90 Fix os.register_at_fork not defined on Windows (#30809)
Summary:
According to https://docs.python.org/3.8/library/os.html#os.register_at_fork, this function is only available in Unix platforms.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30809

Differential Revision: D18828777

Pulled By: bddppq

fbshipit-source-id: 3325a984da488bb0a80a5c27131553fbcf78921f
2019-12-05 13:36:53 -08:00
Peter Bell
dcd1216efe Force early initialization of OpenMP in forked children (#29006)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/28389

Intel's OpenMP implementation sets the thread affinity on the first call to an OpenMP function after a fork. By adding an atfork handler we can force this to happen before a user tries to set the affinity in their own DataLoader `worker_init_fn`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29006

Differential Revision: D18782456

Pulled By: ezyang

fbshipit-source-id: ce0b515256da0cf18ceb125e0cdec99a3311bbd3
2019-12-03 15:23:31 -08:00
Ailing Zhang
a997f224ac Add torch.multiprocessing.create_processes
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28493

Differential Revision: D18766066

Pulled By: ailzhang

fbshipit-source-id: 7f424c8fae3012be2416cf9bc72ee2dde40c1f89
2019-12-03 10:38:19 -08:00
Brian Wignall
e7fe64f6a6 Fix typos (#30606)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30606

Differential Revision: D18763028

Pulled By: mrshenli

fbshipit-source-id: 896515a2156d062653408852e6c04b429fc5955c
2019-12-02 20:17:42 -08:00
なるみ
d83389d327 Ignore F401 in all __init__.py without putting noqa (#25823)
Summary:
By adding `per-file-ignores = __init__.py: F401` into `.flake8` with `flake8>=3.7`, we can ignore F410 in all `__init__.py` without putting `# noqa: F401` line by line.

http://flake8.pycqa.org/en/latest/user/options.html?highlight=per-file-ignores#cmdoption-flake8-per-file-ignores
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25823

Differential Revision: D17252182

Pulled By: soumith

fbshipit-source-id: 87b174075b79e4078953a7521bd1a8f82405646b
2019-10-23 15:28:13 -07:00
Richard Zou
277d442d18 Rename torch.namedtensor -> torch._namedtensor_internals (#26349)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26349

The directory holds a lot of private helper functions that help
implement named tensor functionality. Instead of naming each helper
function with a leading underscore, I change the name of the import to
`_namedtensor_internals` to signal it should not be used directly.

Test Plan: - [namedtensor ci]

Differential Revision: D17424178

Pulled By: zou3519

fbshipit-source-id: 8f7b74346765759303480e581038a661021acf53
2019-09-18 05:47:09 -07:00
Richard Zou
2513ca66ca Add guards for using named tensor with serialization and multiprocessing (#25345)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25345

Test Plan
- New tests [namedtensor ci]

Test Plan: Imported from OSS

Differential Revision: D17101486

Pulled By: zou3519

fbshipit-source-id: 58e803b042056ee6abab8551517f74078f2b81d5
2019-08-29 14:10:33 -07:00
SsnL
eb756746ab Fix possible deadlock in SharedCache inside a forked child proc (#25158)
Summary:
Related: https://github.com/pytorch/pytorch/issues/24927#issuecomment-524608021

`fork` inherits lock state. So if we happen to unfortunately fork when the `SharedCache` lock is held. We could deadlock in the child process when some code tries to acquire it.

Following pytorch multiprocessing library design, this patch resets the lock to a new object after fork. A similar example from python core lib for `multiprocessing.Queue` is :

```py
class Queue(object):
    def __init__(self, ...):
        ...
        self._after_fork()
        if sys.platform != 'win32':
            register_after_fork(self, Queue._after_fork)

    def _after_fork(self):
        debug('Queue._after_fork()')
        self._notempty = threading.Condition(threading.Lock())
        self._buffer = collections.deque()
        self._thread = None
        self._jointhread = None
        self._joincancelled = False
        self._closed = False
        self._close = None
        self._send_bytes = self._writer.send_bytes
        self._recv_bytes = self._reader.recv_bytes
        self._poll = self._reader.poll
```

d4d60134b2/Lib/multiprocessing/queues.py (L54-L78)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25158

Differential Revision: D17091227

Pulled By: soumith

fbshipit-source-id: ee7130f47d7bbd42fc34a2598f1f6974d8d7cdb7
2019-08-28 13:34:03 -07:00
SsnL
e982e46de3 Add multiprocessing_context= argument to DataLoader (#22990)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/22131
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22990

Differential Revision: D16539052

Pulled By: colesbury

fbshipit-source-id: b1c48ae2fb54065dd96a67be263254129e02eaa2
2019-07-29 12:58:40 -07:00
Tongzhou Wang
bc6281028c rebuild_storage_fd retry on EINTR (#21723)
Summary:
Some data loader tests are flaky on py 2 with the following error
```
Jun 12 22:17:31 Traceback (most recent call last):
Jun 12 22:17:31   File "test_dataloader.py", line 798, in test_iterable_dataset
Jun 12 22:17:31     fetched = sorted([d.item() for d in dataloader_iter])
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 697, in __next__
Jun 12 22:17:31     idx, data = self._get_data()
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 664, in _get_data
Jun 12 22:17:31     success, data = self._try_get_data()
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 617, in _try_get_data
Jun 12 22:17:31     data = self.data_queue.get(timeout=timeout)
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/multiprocessing/queues.py", line 135, in get
Jun 12 22:17:31     res = self._recv()
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/site-packages/torch/multiprocessing/queue.py", line 22, in recv
Jun 12 22:17:31     return pickle.loads(buf)
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/pickle.py", line 1382, in loads
Jun 12 22:17:31     return Unpickler(file).load()
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/pickle.py", line 858, in load
Jun 12 22:17:31     dispatch[key](self)
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/pickle.py", line 1133, in load_reduce
Jun 12 22:17:31     value = func(*args)
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/site-packages/torch/multiprocessing/reductions.py", line 274, in rebuild_storage_fd
Jun 12 22:17:31     fd = multiprocessing.reduction.rebuild_handle(df)
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/multiprocessing/reduction.py", line 157, in rebuild_handle
Jun 12 22:17:31     new_handle = recv_handle(conn)
Jun 12 22:17:31   File "/opt/python/2.7.9/lib/python2.7/multiprocessing/reduction.py", line 83, in recv_handle
Jun 12 22:17:31     return _multiprocessing.recvfd(conn.fileno())
Jun 12 22:17:31 OSError: [Errno 4] Interrupted system call
```

Apparently, Python 2.7's `recvfd` calls `recvmsg` without EINTR retry: https://github.com/python/cpython/blob/2.7/Modules/_multiprocessing/multiprocessing.c#L174
So we should call it with an outer try-catch loop.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21723

Differential Revision: D15806247

Pulled By: ezyang

fbshipit-source-id: 16cb661cc0fb418fd37353a1fef7ceeb634f02b7
2019-06-14 09:10:00 -07:00
Soumith Chintala
2e029db2f9 fixes multiprocessing serialization for integer nn.Parameter (#18639)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18639

Differential Revision: D14711565

Pulled By: soumith

fbshipit-source-id: 0063ed138a215b95d6571dcd68b18569714abe19
2019-04-01 17:15:42 -07:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
Vitaly Fedyunin
5653a914f7 Implement reference counting for shared IPC CUDA tensors (#16854)
Summary:
This is to fix #16141 and similar issues.

The idea is to track a reference to every shared CUDA Storage and deallocate memory only after a consumer process deallocates received Storage.

ezyang Done with cleanup. Same (insignificantly better) performance as in file-per-share solution, but handles millions of shared tensors easily. Note [ ] documentation in progress.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16854

Differential Revision: D13994490

Pulled By: VitalyFedyunin

fbshipit-source-id: 565148ec3ac4fafb32d37fde0486b325bed6fbd1
2019-03-25 10:24:38 -07:00
hysts
cbefd0323b Fix typo
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17521

Differential Revision: D14237482

Pulled By: soumith

fbshipit-source-id: 636e0fbe2c667d15fcb649136a65ae64937fa0cb
2019-02-26 20:23:34 -08:00
Shen Li
24f4d3987e Move all Stream and Event Python implementation to C++ (#15937)
Summary:
1. Added `torch/csrc/cuda/Event.h` and `torch/csrc/cuda/Event.cpp` to bind Python Event class to C++ implementation.
2. Move all CUDA runtime invocations from `torch/cuda/streams.py` to C++
3. Added tests to cover Stream and Event APIs. ~(event IPC handle tests is introduced in #15974)~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15937

Differential Revision: D13649001

Pulled By: mrshenli

fbshipit-source-id: 84ca58f35f6ba679a4ba33150ceba678d760d240
2019-01-17 07:29:22 -08:00
Ailing Zhang
be47470c91 Fix cuda multiprocessing cached memory (#14736)
Summary:
This PR fixes #11422

In the old world of CUDA IPC, when we want to share a tensor T from A to B, we have to share the whole CUDA mem allocation where T's storage sit in. And we casted it to the same type of storage of T's.

This causes problem when two different types of storage got allocated to the same CUDA mem block. When we try to reconstruct the second tensor, it will complain about wrong storage type.

In this PR we reconstruct the storage only (not the entire mem block). However, CUDA only allows one open memHandle once per process, we have to save the device pointer in a global cache so that we can reconstruct tensors as they come.

Thanks a ton to ezyang who helped design the solution and debugged the issue!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14736

Differential Revision: D13335899

Pulled By: ailzhang

fbshipit-source-id: cad69db392ed6f8fdc2b93a9dc2899f6d378c371
2018-12-05 10:55:43 -08:00
Pieter Noordhuis
220ce8046e Binding for prctl(PR_SET_PDEATHSIG) (#14491)
Summary:
If torch.multiprocessing.spawn is used to launch non-daemonic
processes (the default since #14391), the spawned children won't be
automatically terminated when the parent terminates.

On Linux, we can address this by setting PR_SET_PDEATHSIG, which
delivers a configurable signal to child processes when their parent
terminates.

Fixes #14394.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14491

Differential Revision: D13270374

Pulled By: pietern

fbshipit-source-id: 092c9d3c3cea2622c3766b467957bc27a1bd500c
2018-11-29 20:09:19 -08:00
Teng Li
ffbc3905a1 Fixed torch.multiprocessing.spawn for not being able to spawn like dataloader workers (#14391)
Summary:
Should fix: https://github.com/pytorch/pytorch/issues/14390

Now imagenet example works fine with multiprocessing and more than 1 dataloader worker
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14391

Reviewed By: calebho

Differential Revision: D13209800

Pulled By: teng-li

fbshipit-source-id: e8abc0fb38d4436cf3474dcbba0e28f4290e4d29
2018-11-27 12:37:41 -08:00
Teng Li
778e23606b multiprocessing.spawn python version check (#14039)
Summary:
This will be super helpful to the user
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14039

Differential Revision: D13089200

Pulled By: teng-li

fbshipit-source-id: 29e7507bd8fe5a0c58a85c52f976bfca282b4c1b
2018-11-16 18:53:23 -08:00
Pieter Noordhuis
1caa341c68 Add torch.multiprocessing.spawn docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13846

Differential Revision: D13029595

Pulled By: pietern

fbshipit-source-id: b733b00f7070c18535c31801f20e6e717eec7748
2018-11-12 14:39:52 -08:00
Pieter Noordhuis
be424de869 Add torch.multiprocessing.spawn helper (#13518)
Summary:
This helper addresses a common pattern where one spawns N processes to
work on some common task (e.g. parallel preprocessing or multiple
training loops).

A straightforward approach is to use the multiprocessing API directly
and then consecutively call join on the resulting processes.

This pattern breaks down in the face of errors. If one of the
processes terminates with an exception or via some signal, and it is
not the first process that was launched, the join call on the first
process won't be affected. This helper seeks to solve this by waiting
on termination from any of the spawned processes. When any process
terminates with a non-zero exit status, it terminates the remaining
processes, and raises an exception in the parent process. If the
process terminated with an exception, it is propagated to the parent.
If the process terminated via a signal (e.g. SIGINT, SIGSEGV), this is
mentioned in the exception as well.

Requires Python >= 3.4.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13518

Reviewed By: orionr

Differential Revision: D12929045

Pulled By: pietern

fbshipit-source-id: 00df19fa16a568d1e22f37a2ba65677ab0cce3fd
2018-11-06 14:08:37 -08:00
Edward Yang
3bfa7258b3 Don't serialize hooks (#11705)
Summary:
Fixes #11683.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11705

Differential Revision: D9833057

Pulled By: ezyang

fbshipit-source-id: 18af9bcd77b088326738d567100fbe4a4c869dd6
2018-10-16 20:11:03 -07:00
Sam Gross
0b63d12db6 Don't call into Python during Storage destruction. (#10407)
Summary:
```
This removes PyObjectFinalizer. We were seeing SIGSEGV at exit in some
programs that use multiprocessing. The backtrace pointed to
StorageRef.__del__ being called from subtype_dealloc. My guess is that
the Python interpreter was shutdown before all C++ Storage objects were
deallocated. Deallocating the C++ Storage called the finalizer which
called back into Python after it was no longer safe to do so.

This avoids a callback from C++ into Python during Storage finalization.
Instead, dead Storage objects (expired weak references) are collected
periodically when shared_cache exceeds a limit. The limit is scaled with
2x the number of live references, which places an upper bound on the
amount of extra memory held by dead Storage objects. In practice, this
should be very small.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10407

Differential Revision: D9272400

Pulled By: colesbury

fbshipit-source-id: ecb14d9c6d54ffc91e134c34a4e770a4d09048a2
2018-08-13 11:20:07 -07:00
Edward Yang
674f7a9778 Correctly share CUDA Parameters. (#10220)
Summary:
```
    Correctly share CUDA Parameters, requires_grad and hooks.

    Previously, the following was true:

    - If you put a Parameter for a CUDA tensor
      in multiprocessing queue (or otherwise tried to transfer it),
      this failed, saying that we cannot pickle CUDA storage.
      This is issue #9996.

    - If you put a leaf Tensor that requires_grad=True through the
      multiprocessing queue, it would come out the other end as
      requires_grad=False (It should have come out the other end
      as requires_grad=True).  Similarly, backwards hooks were
      lost.

    - If you put a non-leaf Tensor that requires_grad=True through
      the multiprocessing queue, it would come out the other end
      as requires_grad=False.

    The root cause for the first issue was that implementation of
    reductions for Parameter used the superclass implementation
    (tensor) in __reduce_ex__, but this always picks up the
    non-ForkingPickler reduction, which doesn't work with CUDA tensors.
    So, we registered a new ForkingPickler specifically for Parameter,
    and adjusted the code to correctly rewrap a Tensor in a Parameter
    if it was originally a parameter.

    While working on this, we realized that requires_grad and backwards
    hooks would not be preserved in the ForkingPickler reduction
    implementation.  We fixed the reducer to save these parameters.
    However, Adam Paszke pointed out that we shouldn't allow sending
    requires_grad=True, non-leaf Tensors over a multiprocessing
    queue, since we don't actually support autograd over process
    boundar.  We now throw an error in this case; this may cause
    previously working code to fail, but this is easy enough to fix;
    just detach() the tensor before sending it.  The error message says
    so.

    Fixes #9996.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10220

Differential Revision: D9160746

Pulled By: ezyang

fbshipit-source-id: a39c0dbc012ba5afc7a9e646da5c7f325b3cf05c
2018-08-10 13:54:56 -07:00