Commit Graph

218 Commits

Author SHA1 Message Date
Yanbo Liang
2e0ce24890 [Dynamo] Support access nn.Module keys (#90502)
Fixes https://github.com/pytorch/torchdynamo/issues/1973

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90502
Approved by: https://github.com/jansel
2022-12-12 09:15:42 +00:00
Bert Maher
c318de4274 [dynamo] Get GPU names without calling nvidia-smi (#90474)
Believe it or not, inductor can sometimes be used on machines that
have CUDA GPUs but no nvidia-smi.  Let's use torch APIs instead of subprocess.

Differential Revision: [D41841930](https://our.internmc.facebook.com/intern/diff/D41841930/)

Differential Revision: [D41841930](https://our.internmc.facebook.com/intern/diff/D41841930)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90474
Approved by: https://github.com/voznesenskym, https://github.com/anijain2305
2022-12-12 05:31:50 +00:00
Edward Z. Yang
8fd31ac4da Preserve original GraphArgs for shape guard codegen (#90665)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90665
Approved by: https://github.com/voznesenskym
2022-12-12 02:35:23 +00:00
Edward Z. Yang
9447005ae3 Improve dynamo debug logging (#90664)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90664
Approved by: https://github.com/voznesenskym
2022-12-12 02:35:23 +00:00
Michael Voznesensky
11442accc6 Make torch._guards, shuffle structures around for migration (#90636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90636
Approved by: https://github.com/ezyang
2022-12-11 23:16:07 +00:00
PyTorch MergeBot
15a4c60383 Revert "Make torch._guards, shuffle structures around for migration (#90636)"
This reverts commit 933b6c4eed.

Reverted https://github.com/pytorch/pytorch/pull/90636 on behalf of https://github.com/huydhn due to Breaking lint on master. Please rebase and run lintrunner -a before re-merging the PR
2022-12-11 10:15:47 +00:00
Michael Voznesensky
933b6c4eed Make torch._guards, shuffle structures around for migration (#90636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90636
Approved by: https://github.com/ezyang
2022-12-11 06:04:17 +00:00
Edward Z. Yang
45109ec30a Completely redo how ShapeEnv guards are generated (#90528)
Instead of inferring shape mappings from a bunch of data structures that were plumbed in InstructionTranslator, we instead work out mappings by just iterating over the GraphArgs and mapping symbols to arguments as they show up. If multiple argument sizes/strides/offset map to the same symbol, this means they are duck sized, so we also generate extra equality tests that they must be equal. Finally, we generate 0/1 specialization guards. The resulting code is much shorter, and I think also easier to understand.

TODO: Delete all the tensor ref tracking code, it's unnecessary

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90528
Approved by: https://github.com/voznesenskym
2022-12-10 13:35:04 +00:00
Edward Z. Yang
b68dead20c Keep track of source name on all allocated SymInts (#90295)
Wow, I had to sweat so much to get this PR out lol.

This PR enforces the invariant that whenever we allocate SymInts as part of fakeification, the SymInt is associated with a Source, and in fact we store the string source name on SymbolWithSourceName. We use 'sname' as the shorthand for source name, as 'name' is already used by sympy to name symbols.

In order to store source names, we have to plumb source names from Dynamo to PyTorch. This made doing this PR a bit bone crushing, because there are many points in the Dynamo codebase where we are improperly converting intermediate tensors into fake tensors, where there is no source (and there cannot be, because it's a frickin' intermediate tensor). I've fixed all of the really awful cases in earlier PRs in the stack. This PR is just plumbing in source names from places where we do have it.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90295
Approved by: https://github.com/voznesenskym
2022-12-10 13:17:34 +00:00
Michael Lazos
9c4189f82d [dynamo] Add is_compiling for dynamo (#90329)
`is_tracing` returns True during dynamo tracing and False when run in Eager

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90329
Approved by: https://github.com/jansel
2022-12-09 20:19:41 +00:00
Michael Lazos
730e44bbc7 Add logging for aot autograd and unified debug flag (#88987)
- Adds `log_level` to aot's config
- Outputs log to `<graph_name>_<log_level>.log` in aot_torchinductor subfolder of the debug directory
- Modifies the Inductor debug context to use the graph name when naming the folder instead of the os pid
- Adds `TORCH_COMPILE_DEBUG` flag to enable it, (as well as separate dynamo and inductor logs)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88987
Approved by: https://github.com/Chillee
2022-12-09 17:28:10 +00:00
PyTorch MergeBot
6581063583 Revert "Dynamo, FX, Inductor Progress Bars (#88384)"
This reverts commit db0ce4acf3.

Reverted https://github.com/pytorch/pytorch/pull/88384 on behalf of https://github.com/malfet due to Broke test_public_bindings across the board
2022-12-09 16:32:25 +00:00
Mark Saroufim
db0ce4acf3 Dynamo, FX, Inductor Progress Bars (#88384)
There are 3 progress bars each gated behind their own config, all off by default for now
1. Dynamo: Macro level config for dynamo, AOT, inductor
2. FX: Progress bar for each pass, with their names
3. Inductor

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88384
Approved by: https://github.com/wconstab, https://github.com/mlazos
2022-12-09 04:32:31 +00:00
Jerry Zhang
797544f1c4 [dynamo][ez] Change module type to str for easier downstream parsing (#90429)
Summary:
att

Test Plan:
NA

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90429
Approved by: https://github.com/SherlockNoMad
2022-12-09 02:00:18 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
c8f5c194ca Fix bug in dynamic shapes multiply (#90336)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90336
Approved by: https://github.com/ezyang
2022-12-09 00:59:50 +00:00
William Wen
eb5b4c21e1 Deepcopy GraphModule in minifier (#90401)
Fixes https://github.com/pytorch/pytorch/issues/90397. Remove deepcopy calls in minifier tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90401
Approved by: https://github.com/anijain2305, https://github.com/mlazos
2022-12-08 23:59:05 +00:00
Michael Lazos
76f440f20a [dynamo] Rewrite inplace addcdiv and inplace add (#90330)
Rewrite inplace addcdiv to a div, mul and inplace add to avoid graph break
Rewrite inplace add to a mul and inplace add to avoid graph break

Needed to close optimizer graph breaks

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90330
Approved by: https://github.com/jansel
2022-12-08 21:19:23 +00:00
Richard Zou
7342251281 functorch.grad support for autograd.Function (#89860)
Happy to split this PR more if it helps.

This PR adds functorch.grad support for autograd.Function. There's a lot
going on; here is the high level picture and there are more details as
comments in the code.

Mechanism (PyOperator)
- Somehow, autograd.Function needs to dispatch with functorch. This is
necessary because every layer of functorch needs to see the
autograd.Function; grad layers need to preserve the backward pass.
- The mechanism for this is via PyOperator. If functorch transforms are
active, then we wrap the autograd.Function in a `custom_function_call`
PyOperator where we are able to define various rules for functorch
transforms.
- `custom_function_call` has a rule for the functorch grad transform.

autograd.Function changes
- I needed to make some changes to autograd.Function to make this work.
- First, this PR splits autograd.Function into a _SingleLevelFunction
(that works with a single level of functorch transform) and
autograd.Function (which works with multiple levels). This is necessary
because functorch's grad rule needs some way of specifying a backward
pass for that level only.
- This PR changes autograd.Function's apply to eitehr call
`custom_function_call` (if functorch is active) or super().apply (if
functorch isn't active).

Testing
- Most of this PR is just testing. It creates an autograd.Function
OpInfo database that then gets passed to the functorch grad-based tests
(grad, vjp, vjpvjp).
- Since functorch transform tests are autogenerated from OpInfo tests,
this is the easiest way to test various autograd.Function with
functorch.

Future
- jvp and vmap support coming next
- better error message (functorch only supports autograd.Function that
have the optional setup_context staticmethod)
- documentation to come when we remove the feature flag

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89860
Approved by: https://github.com/soulitzer
2022-12-08 19:31:04 +00:00
Edward Z. Yang
37892041a1 Always compile tiny graphs with AOTAutograd (#89775)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89775
Approved by: https://github.com/anjali411, https://github.com/bdhirsh
2022-12-08 03:41:29 +00:00
Will Constable
772b726068 Revert "Disable dynamo tracing torchrec.distributed (#90087)" (#90416)
This reverts commit 7e9a8a1361.

This revert fixes a torchbench dlrm amp crash.  Auto revert fails due to conflict.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90416
Approved by: https://github.com/yanboliang, https://github.com/malfet
2022-12-08 01:50:54 +00:00
Edward Z. Yang
d5c6a74699 Rewrite dynamo cond() handling to not recursively call export (#90286)
The original implementation of cond() operator support in dynamo operated by recursively calling export() on the inner subgraph.  This is problematic for a number of reasons:

* My original motivating reason: the original implementation had to play tricks to feed real tensors to the recursive export call, which means that it doesn't work well with tracing with dynamic shapes (where we MUST stay in fake tensors to accurately track dynamic shapes across the cond invocation)
* If there are pending side effects, the recursive export() call won't see those side effects (as they are only tracked by Dynamo, not actually applied to the Python environment.) You can see an example where dynamo cond tracing does the wrong thing at https://github.com/pytorch/pytorch/pull/90208
* If there were side effects inside the true/false branch, these side effects were silently lost (as the export only returns the graph of tensor operations, and not any of the residual Python bytecodes necessary to reapply any side effects.) This could have substantive effects on the export of subsequent parts of the model, as those parts of the models could rely on the side effects.
* It was not possible to track NN module accesses inside the true/false branches, necessitating a hack where the NN module was explicitly passed in as an input to cond https://github.com/pytorch/pytorch/pull/87020#issuecomment-1338842844 which doesn't really make any sense from a backend compilation perspective
* Guards induced from the inside of the true/false branch were not properly propagated to the top level guards; they were just silently dropped (in fact, the original implementation checked that the true/false branch produce the same guards which... is not useful? Like, I don't think that actually is even necessary for correctness)

This PR replaces the old implementation with a new implementation based on graphstate checkpointing. The basic idea is to process a cond(), we checkpoint the state of our interpreter, run the true branch, rollback to our checkpoint, run the false branch, rollback to our checkpoint and then merge the changes from both of the checkpoints. I require the true/false branches to have exactly the same side effects, but union their guards.

Some of the details:

* Dynamo is too aggressive with tracking side effects when processing closures, c.f. https://github.com/pytorch/torchdynamo/pull/233/files#r1040480078 The basic problem is whenever I define a closure, this immediately counts as a side effect, even if I didn't actually mutate anything. This triggered on the nested cond export example. To prevent this from happening, I optimistically avoid tracking side effects, but if a STORE_DEREF happens, I restart analysis with the relevant Source.name() added to `mutated_closure_cell_contents` so we start tracking on closure allocation. This is enough to fix the relevant test.
* For the most part, I assert that the graph states must be equivalent after applying the true/false branches. During debugging, I found it useful to be able to compare two graph states and give a better description about what the divergence was. You can test this using the `diff()` method I've added to a few structures.
* The implementation now supports NestedUserFunctionVariable, which is nice as it allows the true/false branches to be defined closer to the cond implementation.
* I fixed the naming of the true/false subgraphs; previously they were named `name_0`, `name_1`, now they are named `cond_true_0` and `cond_false_0`
* I added `name_to_input` to the saved graph state. I don't actually know if this is necessary, but it seemed like a good idea.
* I have to play some tricks to get the speculating execution of the true/false branch to record into a subgraph. After a careful read of OutputGraph, I found that what would work is overriding graph with a fresh Graph that we want to write things into, and manually setting up the inputs/outputs. It's a little delicate as you have to make sure you reset the Graph to its original before you restore a checkpoint, as checkpoints don't actually save graph for efficiency, and just undo changes on the graph. This capability may usefully get refactored to OutputGraph but I didn't do it in this PR for simplicity.

There are some further problems with the cond() implementation that I leave for future work. Most of these were preexisting with the original implementation.

* Not a problem per se, but if an NN module is used by both the true/false branch, it will show up in the final graph twice (since it has to be a submodule of the GraphModule that makes use of it.) I hope the export pipeline can deal with this.
* List of tensor output for cond is not supported.
* The true/false return values may not have consistent sizes/dims/etc, and we don't check them for consistency.
* If we modify fake tensors in the true/false branches, we aren't rolling them back, c.f. https://github.com/pytorch/torchdynamo/issues/1840

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90286
Approved by: https://github.com/voznesenskym
2022-12-08 01:05:12 +00:00
Edward Z. Yang
54d344b0b7 Type torch._dynamo.side_effects (#90202)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90202
Approved by: https://github.com/voznesenskym
2022-12-08 01:05:12 +00:00
Edward Z. Yang
ca5f69ef19 Convert InstructionTranslatorGraphState and OutputGraphState to NamedTuple (#90186)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90186
Approved by: https://github.com/voznesenskym
2022-12-08 01:05:12 +00:00
Edward Z. Yang
1119aac485 Type torch._dynamo.symbolic_convert (#90185)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90185
Approved by: https://github.com/voznesenskym
2022-12-08 01:05:12 +00:00
Edward Z. Yang
7abd035b2f Add missing mypy-nofollow.ini (#90179)
I'm not sure how lintrunner worked without this lol.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90179
Approved by: https://github.com/albanD, https://github.com/voznesenskym
2022-12-08 01:05:12 +00:00
Edward Z. Yang
6dcc214ac2 Fix AssertionError fake_mode is not None in distributed (#90392)
Fixes https://github.com/pytorch/pytorch/issues/90375

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90392
Approved by: https://github.com/voznesenskym
2022-12-07 20:12:39 +00:00
Bin Bao
f7cdd3a7a0 [inductor] Use a large tolerance for botnet26t_256 (#90383)
Summary: botnet26t_256 shows random tolerance failure on CI. The root
cause of this randomness is still to-be-invesitgated, but let's use a
larger tolerance for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90383
Approved by: https://github.com/ezyang
2022-12-07 19:35:06 +00:00
YJ Shi
2b0b4bb6fd [Dynamo] Fix llvm target for meta schedule & add torch to tvm ndarray helper func (#90214)
Fixes #90213. Also a torch.tensor to tvm.nd.array helper function is added to avoid data copy with dlpack.

@jansel @Chillee

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90214
Approved by: https://github.com/wconstab
2022-12-07 19:23:56 +00:00
Michael Voznesensky
4cdc96fb4f Add hooks structure for passing around user provided hooks, add a new guard_failure_fn (#90371)
This PR introduces a new function we can pass to torch._dynamo.optimize - guard_failure_fn. Usage is in the PR, and the one stacked on top of it, but the gist of it is that it emits failed guard reason strings alongside code. This is useful for tests and debugging, as it gives far finer grained assertions and control than the compile counter alone.

This is a resubmit of https://github.com/pytorch/pytorch/pull/90129

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90371
Approved by: https://github.com/ezyang
2022-12-07 17:51:53 +00:00
Ram Rachum
351d73b97f Fix exception causes all over the codebase (#90271)
This is the continuation to #90134 and hopefully the final PR in this series.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90271
Approved by: https://github.com/kit1980
2022-12-07 04:29:00 +00:00
Yanbo Liang
898b46d6cc [Dynamo][Easy] capture more exceptions when import skip modules (#90338)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90338
Approved by: https://github.com/williamwen42
2022-12-07 02:05:39 +00:00
Edward Z. Yang
3d4b92b171 Ensure that we fakeify tensor subclasses when they are initially tracked (#90009)
The old code didn't actually fakeify traceable tensor subclasses at the
time they are added as a GraphArg to the module; now we do, by ignoring
the subclass during fakeification and relying on Dynamo to simulate
the subclass on top.  See comments for more details.

BTW, this codepath is super broken, see filed issues linked on the
inside.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90009
Approved by: https://github.com/wconstab, https://github.com/voznesenskym
2022-12-06 22:36:32 +00:00
Michael Voznesensky
3b9a386d48 Add TORCH_FAKE_TENSOR_DEBUG use it to enable storage of traces on fake tensors at init time (#90215)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90215
Approved by: https://github.com/ezyang
2022-12-06 22:28:52 +00:00
William Wen
d224ac7f77 Remove logging.CODE (#90234)
Fixes https://github.com/pytorch/torchdynamo/issues/1932

Discussed with @mlazos: if we still want to separate streams for code logging and the rest of info, we can use a separate logger object with a unique name.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90234
Approved by: https://github.com/ezyang
2022-12-06 22:24:43 +00:00
Yanbo Liang
7e9a8a1361 Disable dynamo tracing torchrec.distributed (#90087)
Summary: Context at T138318923

Test Plan: mannual test

Reviewed By: yf225

Differential Revision: D41631076

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90087
Approved by: https://github.com/yf225
2022-12-06 22:17:16 +00:00
Eli Uriegas
27ad2605c8 Hotfix to unblock TRT unit tests internally (#90313)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Export of [D41778303](https://www.internalfb.com/diff/D41778303)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90313
Approved by: https://github.com/ezyang, https://github.com/malfet
2022-12-06 22:14:37 +00:00
Edward Z. Yang
eace084815 Use Sized not Iterable to test for len (#90182)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90182
Approved by: https://github.com/albanD
2022-12-06 16:13:14 +00:00
Michael Lazos
2d9267ba30 [dynamo] Rewrite addcdiv in dynamo to its constituent ops (#90227)
This avoids a graph break when `value` is used. This fixes a graph break in the variants of Adam and Adagrad optimizers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90227
Approved by: https://github.com/jansel
2022-12-06 05:08:44 +00:00
Edward Z. Yang
962ebe88a2 Assert there are no outstanding side effects before calling cond (#90208)
The current cond implementation is silently incorrect when
there are outstanding side effects, since the locally tracked
side effects are lost when the recursive export call is made.
At least we raise an assert now.

I'm working on a refactor of cond which should be able to sidestep
this problem. Maybe.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D41746973](https://our.internmc.facebook.com/intern/diff/D41746973)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90208
Approved by: https://github.com/voznesenskym
2022-12-06 03:53:48 +00:00
William Wen
ebeecbf833 Dynamo FX graph stack traceback fix (#87136)
Migration from https://github.com/pytorch/torchdynamo/pull/1655.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87136
Approved by: https://github.com/voznesenskym
2022-12-06 02:22:16 +00:00
JackCaoG
2ea32f41f4 Fix XLA dynamo CI (#90229)
Fixes https://github.com/pytorch/xla/issues/4274

We should not access `subgraph` once it is deleted.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90229
Approved by: https://github.com/voznesenskym
2022-12-05 22:38:11 +00:00
Edward Z. Yang
5de5c5e462 Assume that co_firstlineno is always defined (#90180)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90180
Approved by: https://github.com/albanD
2022-12-05 19:15:35 +00:00
Michael Voznesensky
32639a822c Fix missing line in XLA backend after mergebot + ghstack gap (#90197)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90197
Approved by: https://github.com/clee2000
2022-12-05 18:30:05 +00:00
Michael Voznesensky
41c3b41b92 Use dynamo fake tensor mode in aot_autograd, move aot_autograd compilation to lowering time [Merger of 89672 and 89773] (#90039)
After all of the preparatory commits, this is a subset of the
changes in https://github.com/pytorch/pytorch/pull/89392 that actually
change us to propagating fake tensors to backends.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

This is the merger of Ed's PR #89672, which is a rewrite of an older PR of mine (#89392), with CI Fixes on top of it (#89773)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90039
Approved by: https://github.com/ezyang
2022-12-05 01:56:50 +00:00
PyTorch MergeBot
4648baa911 Revert "Use dynamo fake tensor mode in aot_autograd, move aot_autograd compilation to lowering time [Merger of 89672 and 89773] (#90039)"
This reverts commit ef0c7ec958.

Reverted https://github.com/pytorch/pytorch/pull/90039 on behalf of https://github.com/clee2000 due to broke xla tests ef0c7ec958 https://github.com/pytorch/pytorch/actions/runs/3606308473/jobs/6077646142
2022-12-04 21:57:30 +00:00
Zheng Yan
c00d395f05 Revert D41682843: Multisect successfully blamed D41682843 for test or build failures (#90132)
Summary:
This diff is reverting D41682843
D41682843 has been identified to be causing the following test or build failures:
Tests affected:
- https://www.internalfb.com/intern/test/281475048939643/

Here's the Multisect link:
https://www.internalfb.com/intern/testinfra/multisect/1444954
Here are the tasks that are relevant to this breakage:
T93770103: 5 tests started failing for oncall assistant_multimodal in the last 2 weeks
We're generating a revert to back out the changes in this diff, please note the backout may land if someone accepts it.

Test Plan: NA

Reviewed By: zyan0, atuljangra, YazhiGao

Differential Revision: D41710749

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90132
Approved by: https://github.com/awgu
2022-12-04 05:35:17 +00:00
Richard Zou
4068c5467d [Reland] Move functorch/_src to torch/_functorch (#88756) (#90091)
This will be the last disruptive functorch internals change.

Why are we moving these files?
- As a part of rationalizing functorch we are moving the code in
functorch/_src to torch/_functorch
- This is so that we can offer the functorch APIs as native PyTorch APIs
(coming soon) and resolve some internal build issues.

Why are we moving all of these files at once?
- It's better to break developers all at once rather than many times

Test Plan:
- wait for tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90091
Approved by: https://github.com/anijain2305, https://github.com/ezyang
2022-12-03 14:17:15 +00:00
Michael Voznesensky
ef0c7ec958 Use dynamo fake tensor mode in aot_autograd, move aot_autograd compilation to lowering time [Merger of 89672 and 89773] (#90039)
After all of the preparatory commits, this is a subset of the
changes in https://github.com/pytorch/pytorch/pull/89392 that actually
change us to propagating fake tensors to backends.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

This is the merger of Ed's PR #89672, which is a rewrite of an older PR of mine (#89392), with CI Fixes on top of it (#89773)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90039
Approved by: https://github.com/ezyang
2022-12-03 01:19:55 +00:00
Yanbo Liang
3916d729c8 [Dynamo] tensor.type() should return tensor types with CPU and GPU variants (#90021)
Fix errors from [7k github models](https://github.com/pytorch/torchdynamo/issues/1884)
```
Traceback (most recent call last):
  File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 1062, in get_fake_value
    return wrap_fake_exception(
  File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 739, in wrap_fake_exception
    return fn()
  File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 1063, in <lambda>
    lambda: run_node(tx.output, node, args, kwargs, nnmodule)
  File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 1112, in run_node
    raise RuntimeError(
RuntimeError: Failed running call_function <function einsum at 0x7fd8f246a4c0>(*('i,j->ij', FakeTensor(FakeTensor(..., device='meta', size=(4,)), cpu), FakeTensor(FakeTensor(..., device='meta', size=(2,)), cuda:0)), **{}):
Unhandled FakeTensor Device Propagation for aten.mul.Tensor, found two different devices cpu, cuda:0
(scroll up for backtrace)
```

The root cause is: ```tensor.type()``` should return ```torch.cuda.FloatTensor``` rather than ```torch.FloatTensor``` if it's on GPU.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90021
Approved by: https://github.com/jansel
2022-12-02 18:57:43 +00:00
Jean Schmidt
f62e54df8f Reland "Dynamo, FX, Inductor Progress Bars (#88384)" … (#90055)
This commit had inconsistent internal land and pr merged. This caused merge conflicts that required revert in both places, normalize the internal commit stack, and then re-land properly.

Original commit: #88384 (011452a2a1)
Inconsistent revert: #90018 (8566aa7c0b4bdca50bf85ca14705b4304de030b3)
Revert of the inconsistent revert to restore healthy state (or re-land of the original commit): cf3c3f2280
Landing the correct, internally congruent revert of the original commit: (This PR) #90055 (TBD)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90055
Approved by: https://github.com/DanilBaibak, https://github.com/malfet
2022-12-02 13:28:00 +00:00