Instead of inferring shape mappings from a bunch of data structures that were plumbed in InstructionTranslator, we instead work out mappings by just iterating over the GraphArgs and mapping symbols to arguments as they show up. If multiple argument sizes/strides/offset map to the same symbol, this means they are duck sized, so we also generate extra equality tests that they must be equal. Finally, we generate 0/1 specialization guards. The resulting code is much shorter, and I think also easier to understand.
TODO: Delete all the tensor ref tracking code, it's unnecessary
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90528
Approved by: https://github.com/voznesenskym
Wow, I had to sweat so much to get this PR out lol.
This PR enforces the invariant that whenever we allocate SymInts as part of fakeification, the SymInt is associated with a Source, and in fact we store the string source name on SymbolWithSourceName. We use 'sname' as the shorthand for source name, as 'name' is already used by sympy to name symbols.
In order to store source names, we have to plumb source names from Dynamo to PyTorch. This made doing this PR a bit bone crushing, because there are many points in the Dynamo codebase where we are improperly converting intermediate tensors into fake tensors, where there is no source (and there cannot be, because it's a frickin' intermediate tensor). I've fixed all of the really awful cases in earlier PRs in the stack. This PR is just plumbing in source names from places where we do have it.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90295
Approved by: https://github.com/voznesenskym
- Adds `log_level` to aot's config
- Outputs log to `<graph_name>_<log_level>.log` in aot_torchinductor subfolder of the debug directory
- Modifies the Inductor debug context to use the graph name when naming the folder instead of the os pid
- Adds `TORCH_COMPILE_DEBUG` flag to enable it, (as well as separate dynamo and inductor logs)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88987
Approved by: https://github.com/Chillee
Rewrite inplace addcdiv to a div, mul and inplace add to avoid graph break
Rewrite inplace add to a mul and inplace add to avoid graph break
Needed to close optimizer graph breaks
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90330
Approved by: https://github.com/jansel
Happy to split this PR more if it helps.
This PR adds functorch.grad support for autograd.Function. There's a lot
going on; here is the high level picture and there are more details as
comments in the code.
Mechanism (PyOperator)
- Somehow, autograd.Function needs to dispatch with functorch. This is
necessary because every layer of functorch needs to see the
autograd.Function; grad layers need to preserve the backward pass.
- The mechanism for this is via PyOperator. If functorch transforms are
active, then we wrap the autograd.Function in a `custom_function_call`
PyOperator where we are able to define various rules for functorch
transforms.
- `custom_function_call` has a rule for the functorch grad transform.
autograd.Function changes
- I needed to make some changes to autograd.Function to make this work.
- First, this PR splits autograd.Function into a _SingleLevelFunction
(that works with a single level of functorch transform) and
autograd.Function (which works with multiple levels). This is necessary
because functorch's grad rule needs some way of specifying a backward
pass for that level only.
- This PR changes autograd.Function's apply to eitehr call
`custom_function_call` (if functorch is active) or super().apply (if
functorch isn't active).
Testing
- Most of this PR is just testing. It creates an autograd.Function
OpInfo database that then gets passed to the functorch grad-based tests
(grad, vjp, vjpvjp).
- Since functorch transform tests are autogenerated from OpInfo tests,
this is the easiest way to test various autograd.Function with
functorch.
Future
- jvp and vmap support coming next
- better error message (functorch only supports autograd.Function that
have the optional setup_context staticmethod)
- documentation to come when we remove the feature flag
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89860
Approved by: https://github.com/soulitzer
The original implementation of cond() operator support in dynamo operated by recursively calling export() on the inner subgraph. This is problematic for a number of reasons:
* My original motivating reason: the original implementation had to play tricks to feed real tensors to the recursive export call, which means that it doesn't work well with tracing with dynamic shapes (where we MUST stay in fake tensors to accurately track dynamic shapes across the cond invocation)
* If there are pending side effects, the recursive export() call won't see those side effects (as they are only tracked by Dynamo, not actually applied to the Python environment.) You can see an example where dynamo cond tracing does the wrong thing at https://github.com/pytorch/pytorch/pull/90208
* If there were side effects inside the true/false branch, these side effects were silently lost (as the export only returns the graph of tensor operations, and not any of the residual Python bytecodes necessary to reapply any side effects.) This could have substantive effects on the export of subsequent parts of the model, as those parts of the models could rely on the side effects.
* It was not possible to track NN module accesses inside the true/false branches, necessitating a hack where the NN module was explicitly passed in as an input to cond https://github.com/pytorch/pytorch/pull/87020#issuecomment-1338842844 which doesn't really make any sense from a backend compilation perspective
* Guards induced from the inside of the true/false branch were not properly propagated to the top level guards; they were just silently dropped (in fact, the original implementation checked that the true/false branch produce the same guards which... is not useful? Like, I don't think that actually is even necessary for correctness)
This PR replaces the old implementation with a new implementation based on graphstate checkpointing. The basic idea is to process a cond(), we checkpoint the state of our interpreter, run the true branch, rollback to our checkpoint, run the false branch, rollback to our checkpoint and then merge the changes from both of the checkpoints. I require the true/false branches to have exactly the same side effects, but union their guards.
Some of the details:
* Dynamo is too aggressive with tracking side effects when processing closures, c.f. https://github.com/pytorch/torchdynamo/pull/233/files#r1040480078 The basic problem is whenever I define a closure, this immediately counts as a side effect, even if I didn't actually mutate anything. This triggered on the nested cond export example. To prevent this from happening, I optimistically avoid tracking side effects, but if a STORE_DEREF happens, I restart analysis with the relevant Source.name() added to `mutated_closure_cell_contents` so we start tracking on closure allocation. This is enough to fix the relevant test.
* For the most part, I assert that the graph states must be equivalent after applying the true/false branches. During debugging, I found it useful to be able to compare two graph states and give a better description about what the divergence was. You can test this using the `diff()` method I've added to a few structures.
* The implementation now supports NestedUserFunctionVariable, which is nice as it allows the true/false branches to be defined closer to the cond implementation.
* I fixed the naming of the true/false subgraphs; previously they were named `name_0`, `name_1`, now they are named `cond_true_0` and `cond_false_0`
* I added `name_to_input` to the saved graph state. I don't actually know if this is necessary, but it seemed like a good idea.
* I have to play some tricks to get the speculating execution of the true/false branch to record into a subgraph. After a careful read of OutputGraph, I found that what would work is overriding graph with a fresh Graph that we want to write things into, and manually setting up the inputs/outputs. It's a little delicate as you have to make sure you reset the Graph to its original before you restore a checkpoint, as checkpoints don't actually save graph for efficiency, and just undo changes on the graph. This capability may usefully get refactored to OutputGraph but I didn't do it in this PR for simplicity.
There are some further problems with the cond() implementation that I leave for future work. Most of these were preexisting with the original implementation.
* Not a problem per se, but if an NN module is used by both the true/false branch, it will show up in the final graph twice (since it has to be a submodule of the GraphModule that makes use of it.) I hope the export pipeline can deal with this.
* List of tensor output for cond is not supported.
* The true/false return values may not have consistent sizes/dims/etc, and we don't check them for consistency.
* If we modify fake tensors in the true/false branches, we aren't rolling them back, c.f. https://github.com/pytorch/torchdynamo/issues/1840
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90286
Approved by: https://github.com/voznesenskym
This PR introduces a new function we can pass to torch._dynamo.optimize - guard_failure_fn. Usage is in the PR, and the one stacked on top of it, but the gist of it is that it emits failed guard reason strings alongside code. This is useful for tests and debugging, as it gives far finer grained assertions and control than the compile counter alone.
This is a resubmit of https://github.com/pytorch/pytorch/pull/90129
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90371
Approved by: https://github.com/ezyang
The old code didn't actually fakeify traceable tensor subclasses at the
time they are added as a GraphArg to the module; now we do, by ignoring
the subclass during fakeification and relying on Dynamo to simulate
the subclass on top. See comments for more details.
BTW, this codepath is super broken, see filed issues linked on the
inside.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90009
Approved by: https://github.com/wconstab, https://github.com/voznesenskym
The current cond implementation is silently incorrect when
there are outstanding side effects, since the locally tracked
side effects are lost when the recursive export call is made.
At least we raise an assert now.
I'm working on a refactor of cond which should be able to sidestep
this problem. Maybe.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D41746973](https://our.internmc.facebook.com/intern/diff/D41746973)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90208
Approved by: https://github.com/voznesenskym
Summary:
This diff is reverting D41682843
D41682843 has been identified to be causing the following test or build failures:
Tests affected:
- https://www.internalfb.com/intern/test/281475048939643/
Here's the Multisect link:
https://www.internalfb.com/intern/testinfra/multisect/1444954
Here are the tasks that are relevant to this breakage:
T93770103: 5 tests started failing for oncall assistant_multimodal in the last 2 weeks
We're generating a revert to back out the changes in this diff, please note the backout may land if someone accepts it.
Test Plan: NA
Reviewed By: zyan0, atuljangra, YazhiGao
Differential Revision: D41710749
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90132
Approved by: https://github.com/awgu
This will be the last disruptive functorch internals change.
Why are we moving these files?
- As a part of rationalizing functorch we are moving the code in
functorch/_src to torch/_functorch
- This is so that we can offer the functorch APIs as native PyTorch APIs
(coming soon) and resolve some internal build issues.
Why are we moving all of these files at once?
- It's better to break developers all at once rather than many times
Test Plan:
- wait for tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90091
Approved by: https://github.com/anijain2305, https://github.com/ezyang
Fix errors from [7k github models](https://github.com/pytorch/torchdynamo/issues/1884)
```
Traceback (most recent call last):
File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 1062, in get_fake_value
return wrap_fake_exception(
File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 739, in wrap_fake_exception
return fn()
File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 1063, in <lambda>
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
File "/scratch/ybliang/work/repos/pytorch/torch/_dynamo/utils.py", line 1112, in run_node
raise RuntimeError(
RuntimeError: Failed running call_function <function einsum at 0x7fd8f246a4c0>(*('i,j->ij', FakeTensor(FakeTensor(..., device='meta', size=(4,)), cpu), FakeTensor(FakeTensor(..., device='meta', size=(2,)), cuda:0)), **{}):
Unhandled FakeTensor Device Propagation for aten.mul.Tensor, found two different devices cpu, cuda:0
(scroll up for backtrace)
```
The root cause is: ```tensor.type()``` should return ```torch.cuda.FloatTensor``` rather than ```torch.FloatTensor``` if it's on GPU.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90021
Approved by: https://github.com/jansel
This commit had inconsistent internal land and pr merged. This caused merge conflicts that required revert in both places, normalize the internal commit stack, and then re-land properly.
Original commit: #88384 (011452a2a1)
Inconsistent revert: #90018 (8566aa7c0b4bdca50bf85ca14705b4304de030b3)
Revert of the inconsistent revert to restore healthy state (or re-land of the original commit): cf3c3f2280
Landing the correct, internally congruent revert of the original commit: (This PR) #90055 (TBD)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90055
Approved by: https://github.com/DanilBaibak, https://github.com/malfet