Commit Graph

138 Commits

Author SHA1 Message Date
Yanbo Liang
f657b2b1f8 [Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
  - The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
2023-12-27 18:47:05 +00:00
PyTorch MergeBot
3b709d7c1e Revert "[Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)"
This reverts commit 015bd0e0a1.

Reverted https://github.com/pytorch/pytorch/pull/116312 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/116312#issuecomment-1869825506))
2023-12-26 23:47:15 +00:00
Yanbo Liang
015bd0e0a1 [Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
  - The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
2023-12-23 09:44:09 +00:00
Guilherme Leobas
1be6a070bc Add support for torch.cond in vmap (#114523)
Fixes: https://github.com/pytorch/pytorch/issues/114136

Patch enables conversion of a BatchedTensor into FakeTensor and write
torch.cond vmap support using torch.where

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114523
Approved by: https://github.com/zou3519
2023-12-20 19:54:38 +00:00
Michael Lazos
8eb7f6276b Ensure wrapping subclasses with as_subclass is supported (#116091)
As title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116091
Approved by: https://github.com/pmeier, https://github.com/zou3519
2023-12-20 14:37:08 +00:00
Michael Lazos
fbeca60b1f Remove replace_all and make VTs mutable (#113725)
1.  Removes calls to `replace_all` and `clone` and makes VTs mutable.
2. Properly handles Tuple Iterator mutation. Previously TupleIterator variables would only be properly reconstructed if they were advanced at least once in a frame. On calls to `next`, the source information would be lost (due to constructing a new iterator without using builder), which would ensure that during codegen the variable would be reconstructed from scratch. Now that VTs are mutated, the source is never lost, so we need to properly track mutation and handle it by replaying calls to `next` at the end of the modified bytecode.
3. Added test for checking iadd side effects, this was missing in our unit test coverage.
4. Fixed two incorrect sources, DelayGraphBreakVariable, and UserMethodVariable both relied on setting the source to AttrSource(parent, name) at the callsite of `var_getattr`.
5. Fixed a bug in inplace adding for lists, it would set the resulting VariableTracker's source to `None` which would utilize a different reconstruct path in codegen. Now this is handled explicitly by reconstructing vars when allow_cache=`False`, so that during side effect replay, the mutated var is correctly updated.

In subsequent PRs:
* Refactoring side effect tracking to be significantly simpler (I think we only need an `is_modified` flag)
* Refactor `next_variables` iterator to match the signature of `next`
* Remove all references to `options` in the code
* Refactor VTs representing mutable collections to implement their own mutation update handling
* Remove clone and/or make it specific to lists for creating slices
* Add mutation tracking/replay for sets
* Add mutation tracking/replay for iter.py
* Removing setting source in builder (it's set at the top level after a var is returned)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113725
Approved by: https://github.com/jansel
2023-12-10 09:31:21 +00:00
Michael Lazos
3c882925da Make subclass type instances constants (like UserDefinedClasses) (#115323)
As title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115323
Approved by: https://github.com/oulgen
2023-12-07 08:10:59 +00:00
Jason Ansel
522bae20df [dynamo] Support any() on SymNodeVariable (#115119)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115119
Approved by: https://github.com/yanboliang
ghstack dependencies: #115095, #115046, #115057
2023-12-05 19:01:31 +00:00
voznesenskym
ddf1cb7870 AOTAutograd: handle set_(), detect metadata mutations that cancel out (#111554)
This should be enough to get @voznesenskym 's FSDP branch to plumb `set_()` through AOTAutograd properly and have everything properly no-op out. Main changes are:

(1) graph break on `aten::set_.source_Tensor_storage_offset` (we could support it but it isn't needed, seems safer to graph break)

(2) Functionalization: add a "proper" functionalization kernel for `aten::set_.source_Tensor`. The previous one we had was codegen'd and it was wrong (it would just clone() and call set_(), which does not do the right thing). I also manually mark on the `FunctionalTensorWrapper` when a given tensor has been mutated by a `set_()` call.

(3) AOTAutograd: I added a new field, `InputAliasInfo.mutates_storage_metadata`, so we can distinguish between "regular" metadata mutations, and metadata mutations due to `set_()` calls. This is mainly because at runtime, one requires calling `as_strided_()` to fix up metadata, while the other requires calling `set_()`.

(4) Made AOTAutograd's detection for metadata mutations / set_() mutations smarter and detect no-ops (if the storage and metadata are all the same).

I also killed `was_updated()` and `was_metadata_updated()`, and replaced them with (existing) `has_data_mutation() ` and (new) `has_data_mutation()`, which can more accurately distinguish between data-mutation vs. `set_()` calls vs. metadata-mutation

**This PR is still silently correct in one case though**, which I'd like to discuss more. In particular, this example:
```
def f(x):
    x_view = x.view(-1)
    x.set_(torch.ones(2))
    x_view.mul_(2)
    return
```

If you have an input that experiences both a data-mutation **and** a `x_old.set_(x_new)` call, there are two cases:

(a) the data mutation happened on the storage of `x_new`. This case should be handled automatically: if x_new is a graph intermediate then we will functionalize the mutation. If x_new is a different graph input, then we will perform the usual `copy_()` on that other graph input

(b) the data mutation happened on the storage of `x_old`. This is more of a pain to handle, and doesn't currently work. At runtime, the right thing to do is probably something like:
```

def functionalized_f(x):
    x_view = x.view(-1)
    # set_() desugars into a no-op; later usages of x will use x_output
    x_output = torch.ones(2)
    # functionalize the mutation on x_view
    x_view_updated = x.mul(2)
    x_updated = x_view_updated.view(x.shape)
    # x experienced TWO TYPES of mutations; a data mutation and a metatadata mutation
    # We need to return both updated tensors in our graph
    return x_updated, x_output
def runtime_wrapper(x):
    x_data_mutation_result, x_set_mutation_result = compiled_graph(x)
    # First, perform the data mutation on x's old storage
    x.copy_(x_data_mutation_result)
    # Then, swap out the storage of x with the new storage
    x.set_(x_set_mutation_result)
```

There are two things that make this difficult to do though:

(1) Functionalization: the functionalization rule for `set_()` will fully throw away the old `FunctionalStorageImpl` on the graph input. So if there are any mutations to that `FunctionalStorageImpl` later on in the graph, the current graph input won't know about it. Maybe we can have a given `FunctionalTensorWrapper` remember all previous storages that it had, and track mutations on all of them - although this feels pretty complicated.

(2) AOTAutograd now needs to know that we might have *two* graph outputs that correspond to a single "mutated input", which is annoying.

It's worth pointing out that this issue is probably extremely unlikely for anyone to run into - can we just detect it and error? This feels slightly easier than solving it, although not significantly easier. We would still need `FunctionalTensorWrapper` to keep track of mutations on any of its "previous" storages, so it can report this info back to AOTAutograd so we can raise an error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111554
Approved by: https://github.com/ezyang
ghstack dependencies: #113926
2023-11-28 19:33:35 +00:00
lezcano
0bb2600c28 Allow to differentiate through NumPy code (#114608)
With this PR it is possible to differentiate through NumPy code modulo
the usual caveats that apply to differentiation:
- That there are no graphbreaks
- That the decomposition in `torch._numpy` is differentiable

@ev-br and I were somewhat careful to achieve the second point, but
it is not tested though and through, so YMMV

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114608
Approved by: https://github.com/voznesenskym
2023-11-28 12:04:37 +00:00
PyTorch MergeBot
3e1abde46d Revert "AOTAutograd: handle set_(), detect metadata mutations that cancel out (#111554)"
This reverts commit a911b4db9d.

Reverted https://github.com/pytorch/pytorch/pull/111554 on behalf of https://github.com/DanilBaibak due to The lower PR in the stack #113926 breaks the internal build ([comment](https://github.com/pytorch/pytorch/pull/111554#issuecomment-1822472206))
2023-11-22 10:13:48 +00:00
Jon Chuang
f66add9b85 [dynamo] graph break on np.ndarray.tobytes (#114208)
We can't model this accurately across np and tnp https://github.com/pytorch/pytorch/issues/114204#issuecomment-1820269949

So let's not even try. Just graph break.

Fixes: https://github.com/pytorch/pytorch/issues/114204

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114208
Approved by: https://github.com/lezcano
2023-11-21 18:19:37 +00:00
voznesenskym
a911b4db9d AOTAutograd: handle set_(), detect metadata mutations that cancel out (#111554)
This should be enough to get @voznesenskym 's FSDP branch to plumb `set_()` through AOTAutograd properly and have everything properly no-op out. Main changes are:

(1) graph break on `aten::set_.source_Tensor_storage_offset` (we could support it but it isn't needed, seems safer to graph break)

(2) Functionalization: add a "proper" functionalization kernel for `aten::set_.source_Tensor`. The previous one we had was codegen'd and it was wrong (it would just clone() and call set_(), which does not do the right thing). I also manually mark on the `FunctionalTensorWrapper` when a given tensor has been mutated by a `set_()` call.

(3) AOTAutograd: I added a new field, `InputAliasInfo.mutates_storage_metadata`, so we can distinguish between "regular" metadata mutations, and metadata mutations due to `set_()` calls. This is mainly because at runtime, one requires calling `as_strided_()` to fix up metadata, while the other requires calling `set_()`.

(4) Made AOTAutograd's detection for metadata mutations / set_() mutations smarter and detect no-ops (if the storage and metadata are all the same).

I also killed `was_updated()` and `was_metadata_updated()`, and replaced them with (existing) `has_data_mutation() ` and (new) `has_data_mutation()`, which can more accurately distinguish between data-mutation vs. `set_()` calls vs. metadata-mutation

**This PR is still silently correct in one case though**, which I'd like to discuss more. In particular, this example:
```
def f(x):
    x_view = x.view(-1)
    x.set_(torch.ones(2))
    x_view.mul_(2)
    return
```

If you have an input that experiences both a data-mutation **and** a `x_old.set_(x_new)` call, there are two cases:

(a) the data mutation happened on the storage of `x_new`. This case should be handled automatically: if x_new is a graph intermediate then we will functionalize the mutation. If x_new is a different graph input, then we will perform the usual `copy_()` on that other graph input

(b) the data mutation happened on the storage of `x_old`. This is more of a pain to handle, and doesn't currently work. At runtime, the right thing to do is probably something like:
```

def functionalized_f(x):
    x_view = x.view(-1)
    # set_() desugars into a no-op; later usages of x will use x_output
    x_output = torch.ones(2)
    # functionalize the mutation on x_view
    x_view_updated = x.mul(2)
    x_updated = x_view_updated.view(x.shape)
    # x experienced TWO TYPES of mutations; a data mutation and a metatadata mutation
    # We need to return both updated tensors in our graph
    return x_updated, x_output
def runtime_wrapper(x):
    x_data_mutation_result, x_set_mutation_result = compiled_graph(x)
    # First, perform the data mutation on x's old storage
    x.copy_(x_data_mutation_result)
    # Then, swap out the storage of x with the new storage
    x.set_(x_set_mutation_result)
```

There are two things that make this difficult to do though:

(1) Functionalization: the functionalization rule for `set_()` will fully throw away the old `FunctionalStorageImpl` on the graph input. So if there are any mutations to that `FunctionalStorageImpl` later on in the graph, the current graph input won't know about it. Maybe we can have a given `FunctionalTensorWrapper` remember all previous storages that it had, and track mutations on all of them - although this feels pretty complicated.

(2) AOTAutograd now needs to know that we might have *two* graph outputs that correspond to a single "mutated input", which is annoying.

It's worth pointing out that this issue is probably extremely unlikely for anyone to run into - can we just detect it and error? This feels slightly easier than solving it, although not significantly easier. We would still need `FunctionalTensorWrapper` to keep track of mutations on any of its "previous" storages, so it can report this info back to AOTAutograd so we can raise an error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111554
Approved by: https://github.com/ezyang
ghstack dependencies: #113926
2023-11-21 01:52:46 +00:00
Edward Z. Yang
934e9c3346 Boolean masking backwards doesn't work even with dynamic output shape ops, break accordingly (#114126)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114126
Approved by: https://github.com/albanD
2023-11-20 19:07:37 +00:00
vfdev-5
a56af02913 [dynamo] Added support for is_contiguous with dynamic shapes (#113645)
Description:
- Added support for `x.is_contiguous` with dynamic shapes

On `main` the following code is giving a graph break:
```python
import torch

@torch.compile(backend="eager", dynamic=True, fullgraph=True)
def f(x):
    if x.is_contiguous():
        return x
    else:
        return 0

x = torch.randn(13, 14)
f(x)
```
with the error message:
```
  File "pytorch/torch/_dynamo/variables/builder.py", line 1541, in wrap_fx_proxy_cls
    unimplemented(
  File "pytorch/torch/_dynamo/exc.py", line 193, in unimplemented
    raise Unsupported(msg)
torch._dynamo.exc.Unsupported: torch.* op returned non-Tensor bool call_method is_contiguous

from user code:
   File "check_is_contig_dynamic_true.py", line 37, in f
    if x.is_contiguous():
```

This PR fixes the issue.
```
TORCH_COMPILE_DEBUG=1 python check_is_contig_dynamic_true.py
[2023-11-14 15:49:04,399] [0/0] torch._dynamo.symbolic_convert: [INFO] Step 1: torchdynamo start tracing f check_is_contig_dynamic_true.py:34
[2023-11-14 15:49:04,403] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line check_is_contig_dynamic_true.py:34 in f ()
[2023-11-14 15:49:04,403] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]     @torch.compile(backend="eager", dynamic=True, fullgraph=True)
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line check_is_contig_dynamic_true.py:37 in f (f)
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]         if x.is_contiguous():
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST x []
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_ATTR is_contiguous [LazyVariableTracker()]
[2023-11-14 15:49:04,804] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input L_x_ L['x']
[2023-11-14 15:49:04,805] [0/0] torch._dynamo.variables.builder: [DEBUG] wrap_to_fake L['x'] (5, 4) [<DimDynamic.DUCK: 1>, <DimDynamic.DUCK: 1>] [None, None]
[2023-11-14 15:49:04,839] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s0 L['x'].size()[0]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s1 L['x'].size()[1]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s2 L['x'].stride()[0]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s1 L['x'].stride()[1]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE CALL_FUNCTION 0 [GetAttrVariable(TensorVariable(), is_contiguous)]
[2023-11-14 15:49:04,843] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE POP_JUMP_IF_FALSE 12 [ConstantVariable(bool)]
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line check_is_contig_dynamic_true.py:42 in f (f)
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]             return 0
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CONST 0 []
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE RETURN_VALUE None [ConstantVariable(int)]
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.convert_frame: [DEBUG] Skipping frame because no content in function call f                     check_is_contig_dynamic_true.py 34
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.convert_frame: [DEBUG] No graph captured with one_graph=True
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] TorchDynamo compilation metrics:
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] Function                           Runtimes (s)
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] -------------------------------  --------------
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] _compile.<locals>.compile_inner          1.2083
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113645
Approved by: https://github.com/lezcano
2023-11-17 12:32:38 +00:00
Jon Chuang
277229d0c6 [dynamo] Fix incorrectly casting SymNode to int when input is bool (#113871)
Fixes https://github.com/pytorch/pytorch/issues/113393, https://github.com/pytorch/pytorch/pull/113848#issuecomment-1814624510

Incorrectly casting symnode type will cause it to take the wrong path in symbolic_shapes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113871
Approved by: https://github.com/jansel
2023-11-16 23:24:57 +00:00
PyTorch MergeBot
7137f5f8c3 Revert "[easy]Remove specialized value (#112252)"
This reverts commit 149b9dfd04.

Reverted https://github.com/pytorch/pytorch/pull/112252 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but https://github.com/pytorch/pytorch/pull/111196 is failing internally. I will provide the details there ([comment](https://github.com/pytorch/pytorch/pull/112252#issuecomment-1813401896))
2023-11-15 23:02:49 +00:00
lezcano
149b9dfd04 [easy]Remove specialized value (#112252)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112252
Approved by: https://github.com/jansel
ghstack dependencies: #111196
2023-11-14 19:14:03 +00:00
PyTorch MergeBot
0e6b6a2483 Revert "AOTAutograd: handle set_(), detect metadata mutations that cancel out (#111554)"
This reverts commit 3afb4e5cf7.

Reverted https://github.com/pytorch/pytorch/pull/111554 on behalf of https://github.com/clee2000 due to the xla failure is real sorry, log classifier is showing the wrong line ([comment](https://github.com/pytorch/pytorch/pull/111554#issuecomment-1809177978))
2023-11-13 21:46:57 +00:00
Brian Hirsh
3afb4e5cf7 AOTAutograd: handle set_(), detect metadata mutations that cancel out (#111554)
This should be enough to get @voznesenskym 's FSDP branch to plumb `set_()` through AOTAutograd properly and have everything properly no-op out. Main changes are:

(1) graph break on `aten::set_.source_Tensor_storage_offset` (we could support it but it isn't needed, seems safer to graph break)

(2) Functionalization: add a "proper" functionalization kernel for `aten::set_.source_Tensor`. The previous one we had was codegen'd and it was wrong (it would just clone() and call set_(), which does not do the right thing). I also manually mark on the `FunctionalTensorWrapper` when a given tensor has been mutated by a `set_()` call.

(3) AOTAutograd: I added a new field, `InputAliasInfo.mutates_storage_metadata`, so we can distinguish between "regular" metadata mutations, and metadata mutations due to `set_()` calls. This is mainly because at runtime, one requires calling `as_strided_()` to fix up metadata, while the other requires calling `set_()`.

(4) Made AOTAutograd's detection for metadata mutations / set_() mutations smarter and detect no-ops (if the storage and metadata are all the same).

I also killed `was_updated()` and `was_metadata_updated()`, and replaced them with (existing) `has_data_mutation() ` and (new) `has_data_mutation()`, which can more accurately distinguish between data-mutation vs. `set_()` calls vs. metadata-mutation

**This PR is still silently correct in one case though**, which I'd like to discuss more. In particular, this example:
```
def f(x):
    x_view = x.view(-1)
    x.set_(torch.ones(2))
    x_view.mul_(2)
    return
```

If you have an input that experiences both a data-mutation **and** a `x_old.set_(x_new)` call, there are two cases:

(a) the data mutation happened on the storage of `x_new`. This case should be handled automatically: if x_new is a graph intermediate then we will functionalize the mutation. If x_new is a different graph input, then we will perform the usual `copy_()` on that other graph input

(b) the data mutation happened on the storage of `x_old`. This is more of a pain to handle, and doesn't currently work. At runtime, the right thing to do is probably something like:
```

def functionalized_f(x):
    x_view = x.view(-1)
    # set_() desugars into a no-op; later usages of x will use x_output
    x_output = torch.ones(2)
    # functionalize the mutation on x_view
    x_view_updated = x.mul(2)
    x_updated = x_view_updated.view(x.shape)
    # x experienced TWO TYPES of mutations; a data mutation and a metatadata mutation
    # We need to return both updated tensors in our graph
    return x_updated, x_output
def runtime_wrapper(x):
    x_data_mutation_result, x_set_mutation_result = compiled_graph(x)
    # First, perform the data mutation on x's old storage
    x.copy_(x_data_mutation_result)
    # Then, swap out the storage of x with the new storage
    x.set_(x_set_mutation_result)
```

There are two things that make this difficult to do though:

(1) Functionalization: the functionalization rule for `set_()` will fully throw away the old `FunctionalStorageImpl` on the graph input. So if there are any mutations to that `FunctionalStorageImpl` later on in the graph, the current graph input won't know about it. Maybe we can have a given `FunctionalTensorWrapper` remember all previous storages that it had, and track mutations on all of them - although this feels pretty complicated.

(2) AOTAutograd now needs to know that we might have *two* graph outputs that correspond to a single "mutated input", which is annoying.

It's worth pointing out that this issue is probably extremely unlikely for anyone to run into - can we just detect it and error? This feels slightly easier than solving it, although not significantly easier. We would still need `FunctionalTensorWrapper` to keep track of mutations on any of its "previous" storages, so it can report this info back to AOTAutograd so we can raise an error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111554
Approved by: https://github.com/ezyang
2023-11-13 16:39:25 +00:00
Jason Ansel
5fe96eaaf4 [dynamo] Remove VariableTracker.propagate (#111726)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111726
Approved by: https://github.com/voznesenskym
ghstack dependencies: #111306, #111415, #111725
2023-11-07 19:55:19 +00:00
Jason Ansel
843a8ecd24 [dynamo] Remove VariableTracker.add_options (#111725)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111725
Approved by: https://github.com/voznesenskym
ghstack dependencies: #111306, #111415
2023-11-07 19:55:19 +00:00
Jason Ansel
9664190952 [dynamo] Eagerly install guards (#111415)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111415
Approved by: https://github.com/voznesenskym
ghstack dependencies: #111306
2023-11-07 19:55:19 +00:00
Jason Ansel
2964682490 [dynamo] Add LazyVariableTracker (#111306)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111306
Approved by: https://github.com/voznesenskym
2023-11-07 19:55:19 +00:00
Aaron Gokaslan
8219bf051b [BE]: Apply RUF015 to torch folder (#113025)
Removes unnecessary allocations of iterators. There is a small chance this may have side effects as the entire iterator is no longer consumed, but this is a way more efficient method for retrieving the first element.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113025
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-11-07 00:48:15 +00:00
Peter Bell
718035791d Prefer e.is_number over not e.free_symbols in SymPy (#112688)
We spend somewhere on the order 1% in `sympy.Expr.free_symbols` as it is called millions of times.
Most of the time we actually just want to know "is this a constant", however `e.is_constant()` is
horribly slow. It turns out though that there is another propery `is_number` that does what we want.

> property is_number:
>
> Returns True if self has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster
> than if not self.free_symbols, however, since is_number will fail as soon as it hits a free symbol or undefined
> function.

Even further, we also avoid the overhead of building the unnecessary set object.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112688
Approved by: https://github.com/lezcano
2023-11-06 20:05:13 +00:00
soulitzer
53fff56ab8 Graph break cleanly for test_nestedtensor (#112662)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112662
Approved by: https://github.com/jbschlosser
2023-11-03 07:20:43 +00:00
Jon Chuang
9bfebf754f [dynamo] fix graph break, improve hygeine - enforce using ConstantVariable for torch.device,torch.dtype (#112416)
Fixes https://github.com/pytorch/pytorch/pull/112332/files#r1375690808

Simplify code paths, fix graph break

```
torch._dynamo.exc.InternalTorchDynamoError: TorchVariable() has no type
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112416
Approved by: https://github.com/lezcano
2023-11-01 00:19:52 +00:00
voznesenskym
b91fcdf4aa [dynamo] Add support for register_post_accumulate_grad_hook (#112325)
lint

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112325
Approved by: https://github.com/jansel
2023-10-31 17:04:49 +00:00
Jason Ansel
4b8a5e1854 [dynamo] Remove VariableTracker.as_specialized (#112363)
My local testing can't seem to find this function actually doing anything.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112363
Approved by: https://github.com/yanboliang
2023-10-30 20:07:55 +00:00
Jason Ansel
c7b78fb76c [dynamo] Replace recursively_contains with parents_tracker (#112122)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112122
Approved by: https://github.com/voznesenskym
2023-10-28 06:46:48 +00:00
Edward Z. Yang
7da713bbaf Convert evaluate_expr GuardOnDataDependentSymNode into graph break (#111919)
Extracted this failure from
https://github.com/pytorch/pytorch/pull/110155

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111919
Approved by: https://github.com/lezcano
2023-10-26 16:28:00 +00:00
Evgeni Burovski
a4e4f41cce MAINT: graph break on numpy.__version__ (#112083)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112083
Approved by: https://github.com/lezcano
ghstack dependencies: #112081, #112082
2023-10-26 01:03:45 +00:00
PyTorch MergeBot
7e654c8f88 Revert "WIP / TST: allow testing torch._numpy under Dynamo (#110401)"
This reverts commit 5ed4a423de.

Reverted https://github.com/pytorch/pytorch/pull/110401 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing dynamo job in trunk 5ed4a423de ([comment](https://github.com/pytorch/pytorch/pull/110401#issuecomment-1779811943))
2023-10-25 18:21:16 +00:00
Evgeni Burovski
5ed4a423de WIP / TST: allow testing torch._numpy under Dynamo (#110401)
Use conditional imports: when running under dynamo, import the original NumPy not torch._numpy. This is what we want to trace, not our implementation.

With this, the test suite passes with and without `PYTORCH_TEST_WITH_DYNAMO=1` (modulo a couple of test modules which are not meant to be compiled, e.g. `test_nep50_examples`). There are two new decorators, `x{fail,pass}ifTorchDynamo`, the `xpass` in most cases indicates a graph break and a fallback to eager for things we do not implement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110401
Approved by: https://github.com/lezcano
2023-10-25 16:02:16 +00:00
Michael Lazos
fb8876069d Support tracing base torch_function impl (#111731)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111731
Approved by: https://github.com/jansel
ghstack dependencies: #111730
2023-10-23 07:11:32 +00:00
Michael Lazos
1d9a7f9e43 [Reland] TensorWithTFOverride inheritance from TensorVariable (#111766)
Accidentally merged https://github.com/pytorch/pytorch/pull/111730 with ghstack, so relanding

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111766
Approved by: https://github.com/jansel
2023-10-23 04:33:16 +00:00
Brian Hirsh
62942b075c dynamo: graph break on resize_ (#111553)
AOTAutograd's handling for resize_() isn't fully robust (and on top of that, functionalization can potentially give up and raise an error if the tensor you're resizing has outstanding views).

So given that, and given that resize_() is rare, I updated dynamo to graph break on resize_() instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111553
Approved by: https://github.com/ezyang
2023-10-22 02:27:14 +00:00
Michael Lazos
62df159c3f move tf override tensor to torch_function.py (#111714)
Moves TensorWithTFOverride to torch_function.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111714
Approved by: https://github.com/eellison, https://github.com/voznesenskym
2023-10-21 02:29:01 +00:00
Michael Lazos
a55ecec195 [dynamo][__torch_function__ 2/n] Refactor TensorWithTFOverrideVariable (#109556)
This is purely a refactor that preserves the existing behavior and tests.

The main contributions of the PR are to refactor the dispatch of `__torch_function__` to enable calling it with  TF override objects in any argument position and matching the eager dispatch behavior.

This will allow for the following in upcoming PRs:

1) have TensorWithTFOverrideVariable inherit from TensorVariable
2) enable tracing through the base `__torch_function__` implementation.

Note: this depends on https://github.com/pytorch/pytorch/pull/109542

towards tracing for https://github.com/pytorch/pytorch/issues/93723

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109556
Approved by: https://github.com/jansel, https://github.com/ezyang
2023-10-20 18:53:38 +00:00
Aaron Gokaslan
cb856b08b2 [BE]: Attach cause to some exceptions and enable RUFF TRY200 (#111496)
Did some easy fixes from enabling TRY200. Most of these seem like oversights instead of intentional. The proper way to silence intentional errors is with `from None` to note that you thought about whether it should contain the cause and decided against it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111496
Approved by: https://github.com/malfet
2023-10-19 21:56:36 +00:00
Evgeni Burovski
5a8a89360d Handle the .tolist method of np.arrays in dynamo (#111382)
Fixes part 1 of https://github.com/pytorch/pytorch/issues/111370#issuecomment-1764730773

While at it, add a test for numpy ndarray `.size` attribute. This started as an attempt to remove the delegation of what looks like a `.size()` method --- which does not exist in numpy --- on the same line this patch adds a `tolist` to.
But this is apparently needed for something else and existing tests start failing. Thus, declare it as _ain't broken don't fix_, and only keep the test. Can remove the test if wanted though.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111382
Approved by: https://github.com/lezcano
2023-10-16 22:56:52 +00:00
Evgeni Burovski
48989bc820 trace frames with np.ndarray (#110512)
Fixes #109604

Resubmit gh-109715 + several skips and small fixes to make tests pass.

The main fix here is by @ysiraichi : previously, dynamo did not resume tracing numpy ndarrays after a graph break.
While at it, fix several small issues Yukio's fix uncovers:

- graph break gracefully on numpy dtypes which do not map to torch.dtypes (uint16 etc)
- recognize array scalars in dynamo, treat them as 0D ndarrays
- make sure that iterating over torch.ndarray generates arrays not bare tensors

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110512
Approved by: https://github.com/lezcano
2023-10-15 00:56:10 +00:00
Michael Voznesensky
02f6a8126e Support a simple subset of functions as backward hooks on intermediate tensors (#109537)
The main thrust of the initial effort here was to capture `register_hook` calls on tensors in compile regions. The first part of this was done in https://github.com/pytorch/pytorch/pull/108903 wherein we added support for register_hook input tensors.

The distinction between input and intermediary is due to implementation differences.

There are 2 kinds of hooks:

1) Hooks on objects with sources (inputs, params)
2) Hooks on objects w/o sources (intermediaries, and outputs).

Note: As outputs can be made simple by how dynamo handles residuals, they could actually be handled as if they were inputs, but, for the sake of this PR, we will refer to hooks as either hooks on inputs (sourced), or hooks on intermediaries (not sourced).

**The plan:**

For tensors w/ a source: (The PR above)
We record registered hooks, store them as a global, and associate them with the tensor in residuals. This means that when dynamo goes to create the frame, where we produce bytecode to stitch together our PT2 modified bytecode with the original eager code, we call register_hook. This registration of hooks in residuals is sound because (a) it happens right after a Pt2 frame region ends and (b) we know that the tensor is alive in f_locals, f_globals, or a module in the users invoking frame. This means we can soundly know it will be around to invoke register_hook on. As long as we guard on the identity of the lifted function, this is sound to do.

For tensors w/o a source: (This PR)

Ostensibly, the most correct and complete solution would be to smuggle hooks into a runtime wrapper in aot_autograd, where all the items the hooks close over are lifted to inputs as necessary and passed alongside the user provided function. This is necessary so that we can properly trace out and capture all the mutations within the user defined hook at backwards time.

This is too complicated - so, we limited the scope of this initial PR to a simple subset of hooks:

- Hooks must have a source (be known to us already, not a lambda or intermediary defined function)
- We must be tracing under compiled autograd

**The flow**:

We use the HOP added in https://github.com/pytorch/pytorch/pull/109690/files, referred to as the HOP below.

1) We intercept register_hook calls and wrap the user defined fn in the HOP
2) We write a `_register_hook_trampoline` to the graph that is a local no-arg function that is invoked as a call_function in the dynamo graph
3) aot_autograd inlines through it during its trace, and sees the HOP
4) the HOP preserves itself in the graph - it does not get traced into
5) During backwards, compiled_autograd installs the HOP under a hook call
6) When compiled_autograd enters compilation over its generated graph, dynamo traces the contents of the hook

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109537
Approved by: https://github.com/ezyang
2023-10-11 01:35:37 +00:00
Kazuaki Ishizaki
2c1b009e39 Fix typo under torch/_dynamo directory (#110459)
This PR fixes typo of comments in files under `torch/_dynamo` directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110459
Approved by: https://github.com/colesbury
2023-10-04 16:05:05 +00:00
Jez Ng
dddf581da7 [dynamo] Add graph break on requires_grad_() (#110053)
Fixes #107861.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110053
Approved by: https://github.com/eellison
2023-10-04 06:22:16 +00:00
Michael Voznesensky
a902150a1e [Easy] ConstantVariable() -> .create (#109896)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109896
Approved by: https://github.com/ezyang
2023-09-22 22:30:15 +00:00
lezcano
8597d37536 Implement numpy(force=True) (#109636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109636
Approved by: https://github.com/ezyang
ghstack dependencies: #109634
2023-09-20 20:06:13 +00:00
lezcano
1f6828ca99 Fix numpy(force=False) (#109634)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109634
Approved by: https://github.com/ezyang
2023-09-20 20:06:13 +00:00
Michael Voznesensky
064ae9ff33 Support register_hook on input tensors (#108903)
The strategy in this PR is pretty straightforward.

There are 2 kinds of hooks:

1) Hooks on objects with sources (inputs, params)
2) Hooks on objects w/o sources (intermediaries, and outputs).

Note: As outputs can be made simple by how dynamo handles residuals, they could actually be handled as if they were inputs, but, for the sake of this PR, we will refer to hooks as either hooks on inputs (sourced), or hooks on intermediaries (not sourced).

The plan:

**For tensors w/ a source:**
We record registered hooks, store them as a global, and associate them with the tensor in residuals. This means that when dynamo goes to create the frame, where we produce bytecode to stitch together our PT2 modified bytecode with the original eager code, we call `register_hook`. This registration of hooks in residuals is sound because (a) it happens right after a Pt2 frame region ends and (b) we know that the tensor is alive in f_locals, f_globals, or a module in the users invoking frame. This means we can soundly know it will be around to invoke `register_hook` on. As long as we guard on the identity of the lifted function, this is sound to do.

**For tensors w/o a source:**
Graph break - we will support this in a subsequent PR

**Handles:**

An interesting new component here is the creation of a `STORE_FAST `->`LOAD_FAST` associated with the handle, the return result of `register_hook`. If the user code stored the result of `register_hook` in a handle, we need to honor that. We do so by interceding into `STORE_FAST`, and recording the name of the local variable as directed by user code. We then honor that same name in the reconstructed bytecode. If the user did not store a hook, we merely pop the produced value to preserve the stack.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108903
Approved by: https://github.com/ezyang
ghstack dependencies: #108846, #109092
2023-09-14 01:52:21 +00:00