Commit Graph

114 Commits

Author SHA1 Message Date
Nathan Goldbaum
f531815526 Deprecate tensor.type() (#30281)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.

I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281

Differential Revision: D18830818

Pulled By: ezyang

fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2019-12-05 10:55:34 -08:00
Edward Yang
1ab2f043ba Move most methods off Variable into torch::autograd::impl functions. (#29665)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29665

Our intention is to merge the static distinction between Tensor and
Variable.  Ordinarily, this would entail merging the methods of Tensor
and Variable.  But there are a lot of "private"-ish methods on Variable
that we don't actually want to dump onto the Tensor class.  So, as prep
work, we move all of those methods off of Variable and into
the torch::autograd::impl namespace (impl as in, please don't use this
end users).  This ends up being a fairly large patch because all of
the call sites have to play ball too.

While I was on the topic, I also moved any of the touched functions into
the C++ file, so that modifying them would not trigger a recompilation of
all of torch.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18496169

Pulled By: ezyang

fbshipit-source-id: afb203252620ec274be596b3e7b1d84d321bad3a
2019-11-18 08:12:12 -08:00
Nikolay Korovaiko
5b702ab52b switching to a simple/full executor
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29230

Differential Revision: D18402229

Pulled By: Krovatkin

fbshipit-source-id: 62f4bc9bc89c0c7369359bba1359c22a2fa80f46
2019-11-11 13:41:35 -08:00
Bram Wasti
ee21142e40 Move custom passes to last optimization step (#29256)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29256

..

Test Plan: ..

Reviewed By: ZolotukhinM

Differential Revision: D18340212

fbshipit-source-id: 30f4850c8a21bdab42c7cf04b4b92b1787449ee2
2019-11-05 20:10:33 -08:00
Nikolay Korovaiko
47faee2fae Switching tests to ProfilingExecutor (rebased)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28535

Differential Revision: D18197932

Pulled By: Krovatkin

fbshipit-source-id: 2639b205e899f800787ee57c157447d54e4669c3
2019-10-29 11:41:42 -07:00
Jerry Zhang
b0f1b5c757 Add QuantFusion to graph_executor (#26591)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26591

att

Test Plan:
.

Imported from OSS

Differential Revision: D17636651

fbshipit-source-id: 85f3fba1ac0f890622f8c3d8bfb1894de5c050e0
2019-09-27 18:01:18 -07:00
Martin Yuan
7fc06ea541 Bytecode export flow (#25187)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25187

The bytecode export flow: dump the bytecode format for the light weighted interpreter.
* The bytecode is generated without input spec optimization. It would be more generic (input independent) with no obvious performance degradation (to be tested).
* Main API: torch::jit::script::Module::save(filename, extra_files, bool *bytecode_format* = false).
* Both bytecode and module object are exported in pickle format.
    * The module object (in data.pkl) is the same as the original JIT model.
    * The serializer is dependent on pickle only (no protobuf or Json).
    * The major functionality is forked in ScriptModuleSerializer2::serialize().
    * The test loader is test_bc_export.cpp.
* Simple APIs are added in Code and its implementation to get necessary information (instructions, operators and constants).
* Since there's no dependency on graph/node, GetAttr is promoted from an operator to first-class instruction (https://github.com/pytorch/pytorch/pull/25151) .
* Some definitions (instructions, writeArchive, etc) that are shared by full JIT and bytecode are pulled out of the local namespace (https://github.com/pytorch/pytorch/pull/25148).

The output layout looks like:

* folders of methods.
    * In each method folder (for example, forward/):
        * bytecode.pkl: instructions and operators
        * constants{.pkl,/}: constant list in constants.pkl. If there are tensors in constants, the binary tensor files in constants/ folder.
* data{.pkl,/}: the module object, with binary tensor files in data/ folder. The same as in torchscript.

Test Plan: Imported from OSS

Differential Revision: D17076411

fbshipit-source-id: 46eb298e7320d1e585b0101effc0fcfd09219046
2019-09-25 16:35:45 -07:00
Nikolay Korovaiko
db5791d543 autodiff changes to enable profiling
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/25397

Differential Revision: D17565747

Pulled By: Krovatkin

fbshipit-source-id: b772437d9e02df99db6e662cb7d1227359959bed
2019-09-25 10:11:44 -07:00
Nikolay Korovaiko
f3fdbba666 print source code when a function is executed (#25868)
Summary:
While this isn't ideal as it might print out the same source every time a function is run; it's still easier to go and tweak python code to reduce loop counts, than to insert `std::cout` and recompile cpp code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25868

Differential Revision: D17318386

Pulled By: Krovatkin

fbshipit-source-id: 928ba6543204042924ab41a724635594709630de
2019-09-12 10:03:59 -07:00
Michael Suo
60f6cc9d59 Emit script function calls during tracing. (#25089)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25089

Previously, when the tracer encountered a scripted function (or method), it
inlined the function into the graph. Now, we emit a CallFunction or
CallMethod node instead.

Test Plan: Imported from OSS

Reviewed By: zdevito

Differential Revision: D16987936

Pulled By: suo

fbshipit-source-id: a3e38a4621f3504909ec0542865dc7e381c243d6
2019-08-30 01:30:03 -07:00
Michael Suo
755f91b400 serializing function calls (#23799)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799

Before, we inlined as part of the initial IR generation process, which
has a few disadvantages:

1. It loses information about what nodes came from which function/method
calls. Other parties who want to implement transformations on the
function/module level don't have a reliable way of doing so.
2. It duplicates a ton of code if we are inlining the same
function/method a tons of times.

After this PR: inline is deferred to the optimization stage, so
optimizations that rely on inlining will still work. But things get
serialized with the function/method calls in.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799

Differential Revision: D16652819

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Pulled By: suo

fbshipit-source-id: a11af82aec796487586f81f5a9102fefb6c246db
2019-08-19 18:42:43 -07:00
Mike Ruberry
c21a774076 Moves clamp from autodiff cpp to symbolic script (#23927)
Summary:
This PR:

- Moves clamp from autodiff cpp to symbolic script
- Adds an additional tuple lowering pass to the graph executor
- Updates clamp backwards to be maximally gradient preserving

Moving clamp to symbolic script presented two challenges:

- When the backward graph is defined the branch taken in the conditional is known, but communicating this information to the Jit is a little tricky. It turns out the Jit has a quirk where variables that can be None at the time of graph instantiation are treated as constants, so testing min and max against None lets the Jit instantiate only one path branch. It might be more natural to select different backward functions for these cases, but that is not yet supported.
- Moving clamp to symbolic script introduced an extra tuple construction and immediate unpacking which prevented fusion. This was dealt with by adding an additional tuple removal pass. This issue could appear whenever a symbolic script's return value was defined in an if statement, which made the Jit see the unpacked tuple as being constructed from an if, not a TupleConstruct. The graph is later optimized but tuple lowering was not performed again after these optimizations.

Moving clamp to symbolic script also adds some explicit conversions to float in graphs which it appears, but these seem harmless.

If clamp were simply moved to symbolic script then its backward graphs would look like this:

`graph(%0 : Float(*, *),
      %1 : AutogradZeroTensor,
      %2 : Float(*, *),
      %3 : int[]?,
      %4 : Scalar?,
      %5 : int):

  %6 : None = prim::Constant() # <string>:5:31
  %7 : float = aten::Float(%5) # <string>:12:37
  %8 : Float(*, *) = prim::FusionGroup_0(%0, %2, %7)
  %9 : (Float(*, *), None, None) = prim::TupleConstruct(%8, %6, %6)
  %10 : Float(*, *), %11 : None, %12 : None = prim::TupleUnpack(%9)
  return (%10)
with prim::FusionGroup_0 = graph(%0 : Float(*, *),
      %1 : Float(*, *),
      %2 : float):
  %3 : Bool(*, *) = aten::le(%1, %2) # <string>:12:29
  %mask.5 : Float(*, *) = aten::type_as(%3, %1) # <string>:12:29
  %5 : Float(*, *) = aten::mul(%0, %mask.5) # <string>:13:28
  return (%5)`

And adding the additional pass to remove tuples eliminates the prim::TupleConstruct and prim::TupleUnpack. Keeping these included previously would cause test_fuser_iou to fail because multiple fusion groups would be created. Since https://github.com/pytorch/pytorch/issues/23372 this test is disabled, however. When enabled the relevant portion of its graph is now:

`%59 : float = aten::Float(%26) # <string>:314:38

  %60 : float = aten::Float(%27) # <string>:314:61
  %61 : int[] = aten::size(%14) # <string>:41:99
  %62 : int[] = aten::size(%11) # <string>:42:100
  %63 : int[] = aten::size(%15) # <string>:41:99
  %64 : int[] = aten::size(%12) # <string>:42:100
  %65 : Tensor, %66 : Tensor, %67 : Tensor, %68 : Tensor, %69 : Tensor, %70 : Tensor, %71 : Tensor, %72 : Tensor, %73 : Double(*, *) = prim::FusionGroup_0(%w.1, %13, %16, %23, %h.1, %54, %inter.1, %0, %12, %15, %18, %17, %29, %11, %14, %60, %59)
  %74 : Tensor = aten::_grad_sum_to_size(%73, %53)
  %75 : Tensor = aten::_grad_sum_to_size(%73, %52)
  %grad_self.10 : Tensor = aten::_grad_sum_to_size(%65, %61) # <string>:41:30
  %grad_other.10 : Tensor = aten::_grad_sum_to_size(%66, %62) # <string>:42:31
  %78 : Tensor = prim::FusionGroup_1(%grad_self.10, %74, %36)
  %79 : Tensor = prim::FusionGroup_2(%grad_other.10, %75, %44)
  %grad_self.14 : Tensor = aten::_grad_sum_to_size(%67, %21) # <string>:33:30
  %grad_other.14 : Tensor = aten::_grad_sum_to_size(%68, %22) # <string>:34:31
  %grad_self.12 : Tensor = aten::_grad_sum_to_size(%69, %63) # <string>:41:30
  %grad_other.12 : Tensor = aten::_grad_sum_to_size(%70, %64) # <string>:42:31
  %grad_self.16 : Tensor = aten::_grad_sum_to_size(%71, %19) # <string>:33:30
  %grad_other.16 : Tensor = aten::_grad_sum_to_size(%72, %20) # <string>:34:31
  %86 : Tensor, %87 : Tensor = prim::FusionGroup_3(%grad_self.12, %grad_self.16, %74, %39)
  %88 : Tensor, %89 : Tensor = prim::FusionGroup_4(%grad_other.12, %grad_other.16, %75, %47)
  return (%79, %88, %89, %78, %86, %87, %grad_self.14, %grad_other.14)`

Which I think is expected/desired.

Finally, this implementation of clamp backwards is "maximally gradient preserving," which simply means that elements on the boundary now receive gradients. For example, if an element of a tensor is 5 and the clamp is to [2, 5], then that element will now receive a gradient. The prior implementation would zero these gradients. See https://github.com/pytorch/pytorch/issues/7002 for a discussion on preserving gradients.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23927

Test Plan: Existing tests provided sufficient coverage.

Differential Revision: D16739740

Pulled By: mruberry

fbshipit-source-id: c94291d20e1f3f25197afc7b74dc61aeb204b074
2019-08-09 13:57:03 -07:00
Sebastian Messmer
bbc53bffef AliasAnalysisKind::CONSERVATIVE/FROM_SCHEMA (#22175)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22175

- Rename AliasAnalysisKind::DEFAULT to AliasAnalysisKind::CONSERVATIVE
- Introduce AliasAnalysisKind::FROM_SCHEMA that means the alias annotations of the schema should be honored
- Introduce AliasAnalysisKind::INTERNAL_SPECIAL_CASE to be able to run assertions that internal special cased ops are treated correctly

- aten:: and prim:: ops are not treated as special cases anymore, but just use AliasAnalysisKind::FROM_SCHEMA
- There's a set of assertions to ensure that aten:: and prim:: ops are all correctly set up to use AliasAnalysisKind::FROM_SCHEMA. Once this PR lands and passes all tests, we will remove those assertions and open up for the possibility of different AliasAnalysisKind settings for aten:: and prim:: ops

Differential Revision: D15929595

fbshipit-source-id: 7c6a9d4d29e13b8c9a856062cd6fb3f8a46a2e0d
2019-07-25 11:53:51 -07:00
Michael Suo
711be82951 Make optimize a thread_local flag
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23170

Test Plan: Imported from OSS

Differential Revision: D16441912

Pulled By: suo

fbshipit-source-id: a33485178a329d54e41e364c4f14950f88481c55
2019-07-24 23:09:21 -07:00
mal
e7a9b0d62f Rename torch::autograd::Function to torch::autograd::Node
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23269

Test Plan: Imported from OSS

Differential Revision: D16454878

fbshipit-source-id: b1e840fc2d3901955280d141e5ad6efd5e9d66af
2019-07-23 20:52:22 -07:00
Nikolay Korovaiko
f81395b3e3 Enable more passes in ProfilingGraphExecutor
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22079

Differential Revision: D16119322

Pulled By: Krovatkin

fbshipit-source-id: 301fcc42d0e1f031d9de5bcd9679fb8c2d742fef
2019-07-10 10:44:18 -07:00
Sebastian Messmer
de85abf226 Allow default construction of Dict/List (#22084)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22084

For DictPtr/ListPtr, default construction was disallowed because it was ambigious if it's supposed to create an empty list or a nullptr.
But since we renamed them to Dict/List, we can now allow default construction without ambiguity.

Differential Revision: D15948098

fbshipit-source-id: 942a9235b51608d1870ee4a2f2f0a5d0d45ec6e6
2019-06-25 17:40:48 -07:00
Sebastian Messmer
275087383b ListPtr->List DictPtr->Dict step 2 (#21937)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21937

This changes call sites to use the new naming scheme

Reviewed By: zdevito

Differential Revision: D15892404

fbshipit-source-id: 8d32aa90a0ead1066688166478f299fde9c2c133
2019-06-19 18:02:05 -07:00
Sebastian Messmer
b527e48588 Use c10::List (#21177)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21177

- Integrate c10::ListPtr into IValue and the c10 dispatcher.
- Streamline conversion to/from IValue. Before, we had IValue::to<> and kernel_functor.h had its own ivalue_to_arg_type and return_type_to_ivalue. They are now unified. Also, this means that nested types like Dicts of Lists of Optional of Dict of ... do work as expected now

Differential Revision: D15476433

fbshipit-source-id: bde9df80df20091aa8e6ae17ba7e90abd149b954
2019-06-12 13:58:24 -07:00
Zachary DeVito
ea822d9626 Interpreter support for CallFunction/CallMethod (#21562)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21562
ghimport-source-id: 17e5e183f730f50d97ef48973aafc6249d54978f

Reviewed By: suo

Differential Revision: D15729500

Pulled By: zdevito

fbshipit-source-id: efa8a133b617b1498810392a8da6b513ce00b5eb
2019-06-09 15:28:26 -07:00
Zachary DeVito
ad0c08f950 Expose ExecutionPlan in prep for function calls (#21561)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21561
ghimport-source-id: 4bf28d8140610a0cefef0c0a17f0a513ae855dde

Reviewed By: suo

Differential Revision: D15729498

Pulled By: zdevito

fbshipit-source-id: b26458336da1efaba71d8a577c3917c6622dae0d
2019-06-09 15:28:22 -07:00
Zachary DeVito
e616a5e8b8 Revert D15600067: Expose ExecutionPlan in prep for function calls
Differential Revision:
D15600067

Original commit changeset: 82b7de458dd6

fbshipit-source-id: ca26a362cd73bdb9e8c4eba15dd5c10986fa79fe
2019-06-07 22:20:44 -07:00
Zachary DeVito
bfb235b8c9 Revert D15618275: Interpreter support for CallFunction/CallMethod
Differential Revision:
D15618275

Original commit changeset: 038ae27e5416

fbshipit-source-id: 8dbe0f564ba103fe445dacc471085c659171705f
2019-06-07 22:20:40 -07:00
Zachary DeVito
5f6afafdef Interpreter support for CallFunction/CallMethod (#21325)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21325
ghimport-source-id: eeca1176f5e00c85a69cd016acccf5105e670e02

Reviewed By: jamesr66a

Differential Revision: D15618275

Pulled By: zdevito

fbshipit-source-id: 038ae27e5416f1ce338009627c839a4d61a00658
2019-06-07 20:56:58 -07:00
Zachary DeVito
1517ff66a1 Expose ExecutionPlan in prep for function calls (#21273)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21273
ghimport-source-id: b92c1e07fbe4122467a21b98d29635295093e0c2

Reviewed By: jamesr66a

Differential Revision: D15600067

Pulled By: zdevito

fbshipit-source-id: 82b7de458dd65c175f55b0f383bfc3fcf4704032
2019-06-07 20:56:55 -07:00
Wanchao Liang
113a27ee45 bake constants into the traced graph, get rid of getNestedValueTrace (#21046)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21046
ghimport-source-id: 5cb3efb1896fbe42336e24c14fbf0bb5e646528e

Differential Revision: D15530991

Pulled By: wanchaol

fbshipit-source-id: b096ca5a1cdce496742b7f7e1de3ef8d21e9a8b0
2019-06-03 21:48:11 -07:00
Dmytro Dzhulgakov
c25e33789e Lightweight at-most-once logging for API usage (#20745)
Summary:
Resubmit #20698 which got messed up.

Idea is that when PyTorch is used in a custom build environment (e.g. Facebook), it's useful to track usage of various APIs centrally. This PR introduces a simple very lightweight mechanism to do so - only first invocation of a trigger point would be logged. This is significantly more lightweight than #18235 and thus we can allow to put logging in e.g. TensorImpl.

Also adds an initial list of trigger points. Trigger points are added in such a way that no static initialization triggers them, i.e. just linking with libtorch.so will not cause any logging. Further suggestions of what to log are welcomed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20745

Differential Revision: D15429196

Pulled By: dzhulgakov

fbshipit-source-id: a5e41a709a65b7ebccc6b95f93854e583cf20aca
2019-05-23 23:17:59 -07:00
Nikolay Korovaiko
f215db9b92 InsertGuards pass
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20438

Differential Revision: D15342655

Pulled By: Krovatkin

fbshipit-source-id: a193e582d621b99f848573fb4478e7b62265dc9f
2019-05-20 10:49:19 -07:00
Edward Z. Yang
9b1dbffba5
Re-sync with internal repository (#20702) 2019-05-20 09:22:57 -04:00
Dmytro Dzhulgakov
d3059b9c49 Lightweight logging for once-only API usage 2019-05-19 23:04:40 -07:00
Edward Yang
97e1f07ffc Replace AT_CHECK with TORCH_CHECK [shard 10/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20436

Reviewed By: jerryzh168

Differential Revision: D15318926

fbshipit-source-id: 71a43070cc50cc174f703ebc595f1d87c6fc1e91
2019-05-15 07:35:37 -07:00
Nikolay Korovaiko
9499c7b7ee Profiling GraphExecutor
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19994

Differential Revision: D15307752

Pulled By: Krovatkin

fbshipit-source-id: 7b35191042199ef16823487e15fe639968cbdc89
2019-05-10 23:05:47 -07:00
Wanchao Liang
4d676d53a6 split canonicalize_ops, make a decompose pass (#19988)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19988
ghimport-source-id: 1dbf39e07099fa24ef9a6c0221312bf01a8011b7

Differential Revision: D15190355

Pulled By: wanchaol

fbshipit-source-id: 83f2b6557efd758810ccb4a4229d71fdebfd06e0
2019-05-08 17:21:59 -07:00
Wanchao Liang
8fbde94664 lower batchmm to non-diff optimization (#19987)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19987
ghimport-source-id: ca4c38312bd56d8a71f1925297deee7f64f573d3

Differential Revision: D15190356

Pulled By: wanchaol

fbshipit-source-id: 761edb08c670fcbc24a06a5b11ceddf311f75884
2019-05-06 15:58:33 -07:00
Thomas Viehmann
5c9ab6f411 Specialize Optional[T] to T (or subtype for Tensor) or None when executing graph (#18407)
Summary:
This patch specializes `Optional[Tensor]` graph inputs to either a `DimensionedTensorType` (if a Tensor is passed) or `NoneType`. Other `Optional[T]` are specialized to `T` or `None`.

- For unwrapping (checked and unchecked) we need to keep the output type, as IR code that follows unwrapping may not work with NoneType (just as it doesn't deal with Optional). While it would not be hit during execution, it will run against the (legitimate) assumptions of the analysis passes.
- Function lookup currently will not match NoneType when it expects optional (I'm not entirely sure why this doesn't lead to unhappyness currently, but hey), I amend this at the level of the function matching code (`operator.cpp`), but see Adam's comments. We would run into trouble if we needed to select between functions whose signature only differs in Optional types with different subtypes, but we would have the same problem when calling them directly, so I would think this is OK.

- It would enable throwing away branches we can't hit. This also reduces the "blockyness" of the graph, so it may be easier to apply optimizations (e.g. fuse things in `if t is None: ...` and outside the `if`.
- Arguments passed into `Optional[Tensor]` arguments will get shape information, which is very handy.
- It get's rid of the problem that tensors passed into Optional arguments get requires_grad set erroneously #18270 (though that also affects lists, which aren't fixed here).
- `Optional[List[int]]` is needed for #18697.

- We're changing typing in a more subtle way than the `TensorType`->`DimensionedTensorType`.
- In particular, specializing to NoneType loses the Type information captured in the `OptionalType` element type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18407

Reviewed By: zdevito

Differential Revision: D15216808

Pulled By: eellison

fbshipit-source-id: 01f1a7643deaf4962c3f55eff2070d54b0e54b69
2019-05-06 15:35:03 -07:00
Mikhail Zolotukhin
8b46938355 Cleanup includes in torch/csrc/jit/* (#19922)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19922
ghimport-source-id: 0434c46bf75621ff79ea27a18a2475e7f13e2487

Differential Revision: D15125015

Pulled By: ZolotukhinM

fbshipit-source-id: 5685edfc94067f62e363a85e9badb7f757b1d321
2019-05-06 13:40:26 -07:00
Zachary DeVito
b9c20d5224 graph_for based on last_optimized_executed_graph (#19142)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19142
ghimport-source-id: 822013fb7e93032c74867fc77c6774c680aef6d1

Differential Revision: D14888703

Pulled By: zdevito

fbshipit-source-id: a2ad65a042d08b1adef965c2cceef37bb5d26ba9
2019-04-16 09:17:53 -07:00
Zachary DeVito
1827ca4c35 Make debug subgraph inlining thread local (#19136)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19136
ghimport-source-id: 3a24ab36aa753ce5cce7bba3467bdbe88e5c7f60

Reviewed By: jamesr66a

Differential Revision: D14885051

Pulled By: zdevito

fbshipit-source-id: b39c6ceef73ad9caefcbf8f40dd1b9132bba03c2
2019-04-13 08:42:14 -07:00
Bram Wasti
b1539412db Add pass registration mechanism (#18587)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18587
ghimport-source-id: 80d753f7046a2a719e0c076684f44fa2059a0921

Differential Revision: D14901227

Pulled By: bwasti

fbshipit-source-id: 56511d0313419b63945a36b80e9ea51abdef2bd4
2019-04-12 15:32:00 -07:00
Zachary DeVito
1abbee0f8e Allow Tensor lists to show up in symbolic differentiable graphs. (#16784)
Summary:
It is done by flattening all tensor lists that are inputs/outputs to the
graph into the inputs/outputs list in the autograd graph.

This is less desirable than simply allowing IValues to exist in the
inputs/outputs of autograd::Function but it is substantially less
intrusive.

CaptureList describes the variables captured for backward in a single class.
UnpackInstructs describes how the flattened inputs to backwards are re-packed into lists.
ailzhang

This PR is also part 2 of covering maskrcnn & bert AD formulas, following #16689.

Ops added in this PR:
```
cat
index
meshgrid
reshape
split
split_with_sizes
stack
unbind
```
I will also add a few perf numbers here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16784

Differential Revision: D14104063

Pulled By: ailzhang

fbshipit-source-id: 5ceadadfd67ccaac60c5fd6740786c5354e252b9
2019-04-10 18:16:20 -07:00
Michael Suo
ce67775f08 remove unused func (#18712)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18712
ghimport-source-id: e435150a501b20695a5276addee93d795e04b532

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18712 [jit][easy] remove unused func**
* #18711 [jit] fix side-effects and aliasing for custom ops

as title

Differential Revision: D14730979

fbshipit-source-id: 381d16ea2a45779bf6d5fc6d90a4f8585461e902
2019-04-05 15:19:28 -07:00
Zachary DeVito
2d07993bcb Add ability to specialize class types to ArgumentSpec (#18314)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18314
ghimport-source-id: 8cecb768d476ab19c9460f39c8f94a764e4cb052

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18314 Add ability to specialize class types to ArgumentSpec**
* #18226 Add Slot type to abstract the raw pointers being used for slots.

Differential Revision: D14574395

fbshipit-source-id: cc3af6e56e9ae52990f4a1ad56ecceaa2d493577
2019-04-02 17:35:57 -07:00
James Reed
85f36014e2 Experimental logging/counters API (#18235)
Summary:
This defines a generic counters API that users can utilize to provide monitoring functionality in e.g. a production service. We expose both counters for runtime internals as well as a TorchScript API to create user-defined counters. Synopsis of the API:

- `torch/csrc/jit/script/logging.h` specifies the externally-facing API in C++
- `torch/jit/_logging.py` specifies the Python API

We use an interface, `LoggerBase`, to define the interactions between users and a logging backend. Implementing a subclass of `LoggerBase` allows the user to handle these events in a custom way, such as logging into a DB or calling into an infra-specific counters API.

From the frontend perspective, we can create log events in two ways:
1. We provide an `add_stat_value(name, val)` function. This calls into the Logger backend with a key/value pair. For example, we might call `add_stat_value('foo', 1)` to bump an event counter.
2. We provide a `time_point()` function to record a timestamp in nanoseconds. This can be used in conjunction with `add_stat_value` to record runtime wall clock durations.

Examples of frontend usage can be found in `test_jit.py TestLogging`.

We provide a trivial `LockingLogger` implementation as an example and for testing purposes. It is likely not ready for production usage. It demonstrates that a backend implementing the API can do things like specify aggregation types and report these aggregate stats via the `get_counters()` API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18235

Differential Revision: D14545060

Pulled By: jamesr66a

fbshipit-source-id: 04099543a1898cfdd411511e46e03d5dce9b4881
2019-03-29 17:14:03 -07:00
eellison
dc6b5b2a52 Optimize boolean expressions & unwraps (#18259)
Summary:
Simplify or eliminate boolean and/or expressions, optimize unwrapping a value that cannot be None, and optimize using `is` with a None and a non-None value

Since peephole optimize is now introducing constants, i added another constant propagation pass after running it.

Previously i had a PR that did this & optimized shape ops - i will add the shape optimizations in a separate PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18259

Differential Revision: D14602749

Pulled By: eellison

fbshipit-source-id: 1c3f5a67067d8dfdf55d7b78dcb616472ea8a267
2019-03-25 21:50:57 -07:00
Wanchao Liang
6c9b312fd4 Add addcmul, lerp to fuser, enable scalar->float specialization in symbolic script (#18081)
Summary:
This PR did two things:

1. Enable scalar->float specialization in symbolic script, so AD formula that contains scalar in the schema, should write `float` instead.
2. add addcmul, lerp to AD and fuser.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18081

Differential Revision: D14490493

Pulled By: wanchaol

fbshipit-source-id: b3b86d960d5f051b30733bc908b19786111cdaa4
2019-03-25 11:05:45 -07:00
Roy Li
7aae51cded Replace tensor.type().scalarType() calls with tensor.scalar_type()
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17515

Reviewed By: ezyang

Differential Revision: D14233250

fbshipit-source-id: 6c7af8d2291c0c2b148001b30cf03834f34366c0
2019-03-08 14:08:18 -08:00
Wanchao Liang
ab95b5c6cc Rename prim::Undefined to prim::AutogradZero (#17611)
Summary:
supersedes #17245
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17611

Differential Revision: D14283581

Pulled By: wanchaol

fbshipit-source-id: 8022d02b8a021ea2fee9a18a2c8920eb123200c5
2019-03-01 15:13:18 -08:00
Ailing Zhang
b0545aa85f maskrcnn & bert AD coverage part 1 (#16689)
Summary:
- Moved a few functions from `autograd` namespace to `aten` namespace to be visible from JIT nativeResolver.
- Added a hack to loop up keyword only argument. Will add proper support for kw only later
- Simulate function overload in aten using `_<number>` as function name suffix.
- Even `forward` returns multiple outputs like in `kthvalue`, there's at most one requires grad that we currently support.
- Removed the `TensorList` related ops here since partial `TensorList` support is prone to bugs. Our symbolic diff for `cat` was never tested with autodiff, and it seems broken. Need to find another proper way to support these ops(either by properly supporting `TensorList` or sth like `prim::ConstantChunk`  and leave them for next PR.

Ops supported in this PR:
```
erf
expand_as
index
kthvalue
mean
permute
pow
rsub
select
sqrt
squeeze
t
to
topk
transpose
view
var
embedding
logsumexp
// grad is None
_dim_arange
contiguous
nonzero
ones_like
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16689

Differential Revision: D14020806

Pulled By: ailzhang

fbshipit-source-id: a5e2c144a7be5a0d39d7ac5f93cb402ec12503a5
2019-02-14 15:36:39 -08:00
Wanchao Liang
ac00e85e36 Remove undefined tensor in jit script (#16379)
Summary:
This PR is a follow up of #15460, it did the following things:

* remove the undefined tensor semantic in jit script/tracing mode
* change ATen/JIT schema for at::index and other index related ops with `Tensor?[]` to align with what at::index is really doing and to adopt `optional[tensor]` in JIT
* change python_print to correctly print the exported script
* register both TensorList and ListOfOptionalTensor in JIT ATen ops to support both
* Backward compatibility for `torch.jit.annotate(Tensor, None)`

List of follow ups:

* remove the undefined tensor semantic in jit autograd, autodiff and grad_of
* remove prim::Undefined fully

For easy reviews, please turn on `hide white space changes` in diff settings.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16379

Differential Revision: D13855677

Pulled By: wanchaol

fbshipit-source-id: 0e21c14d7de250c62731227c81bfbfb7b7da20ab
2019-02-07 11:02:14 -08:00
Mikhail Zolotukhin
0e6123fb8a Remove dependency on ResourceGuard from IR.h. (#16351)
Summary:
It looks like `WithInsertionPoint` and `WithCurrentScope` can be easily implemented without
`ResourceGuard` - that helps readability and removes one more dependency. Is there anything I'm missing?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16351

Differential Revision: D13821826

Pulled By: ZolotukhinM

fbshipit-source-id: b203200b345fb5508a97dc8656e6f51cde4cc21f
2019-01-29 00:21:32 -08:00