Commit Graph

15 Commits

Author SHA1 Message Date
Nathan Goldbaum
f531815526 Deprecate tensor.type() (#30281)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.

I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281

Differential Revision: D18830818

Pulled By: ezyang

fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2019-12-05 10:55:34 -08:00
mal
e7a9b0d62f Rename torch::autograd::Function to torch::autograd::Node
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23269

Test Plan: Imported from OSS

Differential Revision: D16454878

fbshipit-source-id: b1e840fc2d3901955280d141e5ad6efd5e9d66af
2019-07-23 20:52:22 -07:00
Edward Yang
97e1f07ffc Replace AT_CHECK with TORCH_CHECK [shard 10/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20436

Reviewed By: jerryzh168

Differential Revision: D15318926

fbshipit-source-id: 71a43070cc50cc174f703ebc595f1d87c6fc1e91
2019-05-15 07:35:37 -07:00
Shen Li
d6815e1e27 Only record grad_fn in C++ Scatter and Gather when required so (#20286)
Summary:
C++ `Scatter` and `Gather` always set autograd history for input data tensors regardless whether they require grad. This hits assertion failure in `set_history(Tensor, shared_ptr<Function> grad_fn)`
where `grad_fn` cannot be nullptr. After this PR, C++ `Scatter` and `Gather` only record `grad_fn` when required.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20286

Differential Revision: D15266610

Pulled By: mrshenli

fbshipit-source-id: 641df0ea36e7c922b5820c8dc3f83e2a050412b5
2019-05-08 21:04:21 -07:00
Karl Ostmo
8f0603b128 C++ changes toward libtorch and libcaffe2 unification (#19554)
Summary:
* adds TORCH_API and AT_CUDA_API in places
* refactor code generation Python logic to separate
  caffe2/torch outputs
* fix hip and asan
* remove profiler_cuda from hip
* fix gcc warnings for enums
* Fix PythonOp::Kind
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19554

Differential Revision: D15082727

Pulled By: kostmo

fbshipit-source-id: 83a8a99717f025ab44b29608848928d76b3147a4
2019-04-26 01:38:10 -07:00
Mikhail Zolotukhin
1905bbb01d Include ATen/core/functional.h directly instead of torch/csrc/utils/functional.h. (#16377)
Summary:
One more shim removed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16377

Differential Revision: D13821816

Pulled By: ZolotukhinM

fbshipit-source-id: 007f014d404de51841437db7eef28367a2f6e46b
2019-01-30 14:02:34 -08:00
Zachary DeVito
b2eb98f6c3 Remove cuda from autograd profiler (#15898)
Summary:
This puts stubs in the autograd profiler for the use of cuda APIs allowing the cuda parts of libtorch to be linked separately from the CPU parts.

This also edits the buck build.

Previous:

For GPU builds:
_C -> csrc -> caffe2
For CPU builds:
_C -> csrc-cpu -> caffe2

Now:
GPU:
_C -> libtorch_cuda -> (libtorch -> caffe2, for CPU)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/15898

Reviewed By: ailzhang

Differential Revision: D13617991

Pulled By: zdevito

fbshipit-source-id: 6d84a50bb356a54b4217f93219902755601b00e1
2019-01-15 16:43:11 -08:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Edward Yang
1a4473bbd7 Rewrite THPUtils_PySequence_to_CUDAStreamList to return vector<optional<CUDAStream>> (#13125)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13125

Previously, it returned a vector of THCStream*, which we eventually turned
into CUDAStream.  No need to spatter the conversion code everywhere: just
do it correctly to begin with.  An important side effect of doing it this
way is that we no longer pass nullptr to CUDAStream; instead, we create
the default stream.  I will rely on this in a later patch.

Reviewed By: gchanan

Differential Revision: D10853224

fbshipit-source-id: f6bd6594eba4626eb41a4a5e67fc64c9bbb46a1a
2018-10-29 08:27:23 -07:00
Yangqing Jia
713e706618 Move exception to C10 (#12354)
Summary:
There are still a few work to be done:

- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h

This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:

(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.

Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354

Reviewed By: orionr

Differential Revision: D10238910

Pulled By: Yangqing

fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
2018-10-15 13:33:18 -07:00
Sebastian Messmer
f51f15bb27 Update include paths for ATen/core (#10130)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10130

Update some include paths to make them internally consistent

Reviewed By: ezyang

Differential Revision: D9119906

fbshipit-source-id: b44e5cab8e8e795ee18afe9ffc6caf1f2b413467
2018-08-03 11:57:02 -07:00
Edward Yang
b5c8d59451 Add a CUDAContext header include
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9662

Differential Revision: D8945581

Pulled By: ezyang

fbshipit-source-id: 2fe0adc96456788579f7d6f1c4513fe45360c030
2018-07-20 20:39:09 -07:00
Edward Yang
23ed26a0c3 Guard include of cuda-only header comm.h (#9656)
Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9656

Reviewed By: colesbury

Differential Revision: D8941361

Pulled By: ezyang

fbshipit-source-id: c18cb0e606ae0608e5892040192b8792ae542b74
2018-07-20 19:46:36 -07:00
Mike Ruberry
1003ccfa15 Creates CUDAContext (#9435)
Summary:
ezyang noticed that the CUDAStream files lived under ATen/ despite being CUDA-specific, and suggested porting them to ATen/cuda and exposing them with a new CUDAContext. This PR does that. It also:

- Moves ATen's CUDA-specific exceptions for ATen/cudnn to ATen/cuda for consistency
- Moves getDeviceProperties() and getCurrentCUDASparseHandle() to CUDAContext from CUDAHooks

The separation between CUDAContext and CUDAHooks is straightforward. Files that are in CUDA-only builds should rely on CUDAContext, while CUDAHooks is for runtime dispatch in files that can be included in CPU-only builds. A comment in CUDAContext.h explains this pattern. Acquiring device properties and CUDA-specific handles is something only done in builds with CUDA, for example, so I moved them from CUDAHooks to CUDAContext.

This PR will conflict with #9277 and I will merge with master after #9277 goes in.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9435

Reviewed By: soumith

Differential Revision: D8917236

Pulled By: ezyang

fbshipit-source-id: 219718864234fdd21a2baff1dd3932ff289b5751
2018-07-20 12:56:15 -07:00
Peter Goldsborough
b770156a7a Functional DataParallel (#9234)
Summary:
This PR adds the functional version of `DataParallel` (i.e. `data_parallel`) to the C++ frontend.

For this, I had to:
1. Add "differentiable" versions of scatter and gather, which perform their inverse operation in the backward pass, to C++. I've added them under `torch/csrc/autograd/functions/comm.{h,cpp}`. I had to move some utilities from `VariableType.cpp` into `torch/csrc/autograd/functions/utils.h`, and changed them a bit to fix the `const_cast`s for which there were `TODO`s,
2. Implement the `replicate`, `parallel_apply` and the combining `data_parallel` functions in C++.

`replicate` is implemented based on our existing `clone()` interface, along with the ability to set the current device via `at::OptionsGuard` (so nice).

`parallel_apply` is implemented using `at::parallel_for` (CC cpuhrsch) and [follows the code from PyTorch](https://github.com/pytorch/pytorch/blob/master/torch/nn/parallel/parallel_apply.py).

Added lots of tests for these things.

apaszke ezyang ebetica colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9234

Differential Revision: D8865182

Pulled By: goldsborough

fbshipit-source-id: 4f1fecf2b3f3bc1540c071dfb2d23dd45de433e4
2018-07-19 16:12:04 -07:00