Commit Graph

5 Commits

Author SHA1 Message Date
Sergii Dymchenko
f51f6aa387 Fix non-existing parameters in docstrings (#90505)
Continuation after https://github.com/pytorch/pytorch/pull/90163.

Here is a script I used to find all the non-existing arguments in the docstrings (the script can give false positives in presence of *args/**kwargs or decorators):

_Edit:_
I've realized that the indentation is wrong for the last `break` in the script, so the script only gives output for a function if the first docstring argument is wrong. I'll create a separate PR if I find more issues with corrected script.

``` python
import ast
import os
import docstring_parser

for root, dirs, files in os.walk('.'):
    for name in files:
        if root.startswith("./.git/") or root.startswith("./third_party/"):
            continue
        if name.endswith(".py"):
            full_name = os.path.join(root, name)
            with open(full_name, "r") as source:
                tree = ast.parse(source.read())
                for node in ast.walk(tree):
                    if isinstance(node, ast.FunctionDef):
                        all_node_args = node.args.args
                        if node.args.vararg is not None:
                            all_node_args.append(node.args.vararg)
                        if node.args.kwarg is not None:
                            all_node_args.append(node.args.kwarg)
                        if node.args.posonlyargs is not None:
                            all_node_args.extend(node.args.posonlyargs)
                        if node.args.kwonlyargs is not None:
                            all_node_args.extend(node.args.kwonlyargs)
                        args = [a.arg for a in all_node_args]
                        docstring = docstring_parser.parse(ast.get_docstring(node))
                        doc_args = [a.arg_name for a in docstring.params]
                        clean_doc_args = []
                        for a in doc_args:
                            clean_a = ""
                            for c in a.split()[0]:
                                if c.isalnum() or c == '_':
                                    clean_a += c
                            if clean_a:
                                clean_doc_args.append(clean_a)
                        doc_args = clean_doc_args
                        for a in doc_args:
                            if a not in args:
                                print(full_name, node.lineno, args, doc_args)
                            break

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90505
Approved by: https://github.com/malfet, https://github.com/ZainRizvi
2022-12-09 21:43:09 +00:00
Edward Wang (EcoF)
7c0ccb8a9d black formatting for utils/tensorboard (#76396)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/76396

Reviewed By: Reubend

Differential Revision: D35945748

Pulled By: edward-io

fbshipit-source-id: ffee22e88aaf49eb98b3e2eb6624a2dadb8ef754
(cherry picked from commit 6b5656b7c081cd69135b54f7d13d02c1c361b696)
2022-04-28 00:21:58 +00:00
anjali411
ddff014b79 fixed scale_factor calculation for uint8 tensor (#31778)
Summary:
When calling the add_images() method on the tensorboard SummaryWriter with a uint8 NCHW tensor, the tensor is incorrectly scaled, resulting in overflow behavior. This leads to incorrect images being displayed in tensorboard.

Issue: https://github.com/pytorch/pytorch/issues/31459

Local Testing (ran this code with and without the PR changes and printed scale_factor):

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter()
x=torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8)
writer.add_images("images", x)

Before- scale_factor: 255, After- scale_factor: 1
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31778

Differential Revision: D19289189

Pulled By: anjali411

fbshipit-source-id: 350a1650337244deae4fd8f8b7fb0e354ae6986b
2020-01-06 10:27:35 -08:00
Tzu-Wei Huang
6dc70aa513 add test coverage for make_np (#20317)
Summary:
addresses https://github.com/pytorch/pytorch/pull/16196#discussion_r276381946

cc orionr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20317

Differential Revision: D15289400

Pulled By: orionr

fbshipit-source-id: 914416a8c1369d95656f556c6e05348957789466
2019-05-10 13:59:48 -07:00
Tzu-Wei Huang
98e312cf96 TensorBoard support within PyTorch (#16196)
Summary:
This PR adds TensorBoard logging support natively within PyTorch. It is based on the tensorboardX  code developed by lanpa and relies on changes inside the tensorflow/tensorboard repo landing at https://github.com/tensorflow/tensorboard/pull/2065.

With  these changes users can simply `pip install tensorboard; pip install torch` and then log PyTorch data directly to the TensorBoard protobuf format using

```
import torch
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
s1 = torch.rand(1)
writer.add_scalar('data/scalar1', s1[0], 0)
writer.close()
```

Design:
- `EventFileWriter` and `RecordWriter` from tensorboardX now live in tensorflow/tensorboard
- `SummaryWriter` and PyTorch-specific conversion from tensors, nn modules, etc. now live in pytorch/pytorch. We also support Caffe2 blobs and nets.

Action items:
- [x] `from torch.utils.tensorboard import SummaryWriter`
- [x] rename functions
- [x] unittests
- [x] move actual writing function to tensorflow/tensorboard in https://github.com/tensorflow/tensorboard/pull/2065

Review:
- Please review for PyTorch standard formatting, code usage, etc.
- Please verify unittest usage is correct and executing in CI

Any significant changes made here will likely be synced back to github.com/lanpa/tensorboardX/ in the future.

cc orionr, ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16196

Differential Revision: D15062901

Pulled By: orionr

fbshipit-source-id: 3812eb6aa07a2811979c5c7b70810261f9ea169e
2019-04-25 21:30:23 -07:00