Fixes a bunch of benchmarks that failed with cudagraph errors including `tlp python benchmarks/dynamo/timm_models.py --device cuda --inductor --accuracy --amp --training --only resmlp_12_224` when `specialize_float=False`
Also brings down number of overall failures (with keep-going) from 108 => 62. I'd estimate >80% of those 62 are wobbly expect tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140346
Approved by: https://github.com/ezyang
ghstack dependencies: #140983, #141003
Type annotations for compile_fx.
- Some of the stuff here is pretty complicated (functions which return functions that take functions) so I bailed on those and used `Any` just to get the rest landed.
- There are also changes to type signatures in other files which I did just to let mypy know more about the types in compile_fx.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138033
Approved by: https://github.com/Skylion007
## save&load support for OptimizedModule
[Issue Description](https://github.com/pytorch/pytorch/pull/101651)
English is not my native language; please excuse typing errors.
This pr is based on commit b9588101c4d3411b107fdc860acfa8a72c642f91\
I'll do something with the merge conflicts later
### test result for test/dynamo
Conclusion:\
It performs the same as before as far as I can see.
ENV(CPU only):\
platform linux -- Python 3.10.14, pytest-7.3.2, pluggy-1.5.0\
configfile: pytest.ini\
plugins: anyio-3.7.1, cpp-2.3.0, flakefinder-1.1.0, xdist-3.3.1, xdoctest-1.1.0, metadata-3.1.1, html-4.1.1, hypothesis-5.35.1, rerunfailures-14.0
#### before this pr:
[before](https://github.com/pytorch/pytorch/files/15329370/before.md)
#### after this pr:
[after](https://github.com/pytorch/pytorch/files/15329376/after.md)
### some changes
1. add test_save_and_load to test/dynamo/test_modules.py with & without "backend='inductor'"
2. add \_\_reduce\_\_ function to OptimizedModule and derived classes of _TorchDynamoContext for pickling & unpickling
3. change the wrappers into wrapper classes ( including convert_frame_assert, convert_frame, catch_errors_wrapper in torch/_dynamo/convert_frame.py & wrap_backend_debug in torch/_dynamo/repro/after_dynamo.py )
4. change self.output.compiler_fn into innermost_fn(self.output.compiler_fn) in torch/_dynamo/symbolic_convert.py to get the origin compiler_fn and to avoid the "compiler_fn is not eager" condition
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126374
Approved by: https://github.com/msaroufim, https://github.com/jansel
# Note: Returning Fake Tensors on First AOT Autograd Call
#
# Inductor will optimize strides of outputs when it deems it profitable.
# For instance, converting to channels last. When we split the graph here
# into multiple inductor compilations, we need to make sure that the
# output strides of one compilation is appropriately passed to the subsequent
# compilations. However, the mapping from inductor output to dynamo output
# is non-trivial due to aot_autograd's deduping, de-aliasing, mutation, re-writing,
# subclass handling, etc. In order to replay all this logic we set a flag such that
# the first invocation of inductor in aot_autograd will return Fake Tensors with
# appropriate strides. Then, all of aot autograd's runtime logic is replayed.
# This gives us the appropriately strided outputs here which will reflect runtime strides.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120523
Approved by: https://github.com/yf225, https://github.com/bdhirsh
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.
Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
For a while now, we've been re-running our functionalization analysis pass twice - once for get metadata when dedup'ing, and an entire second time during aot_dispatch_base/autograd.
This should also probably speed up compile times pretty noticeably, since we're going from:
(a) inference-only trace case: 3 fw traces -> 2 fw traces
(b) autograd trace case: 2 fw traces + 1 joint trace -> 1 fw trace + 1 joint trace
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95992
Approved by: https://github.com/ezyang