Fixes#10536
Reattempt of #61467. Thank you so much to @mskoh52 for your excellent work!
As I was trying to create a more efficient LLM data collator, I realized that `pad_sequence` only supports right padding, even though left padding is a very common format for LLMs, like Llama and Mistral.
The proposed alternative implementation was to use multiple flips, which tends to be 1.5x-2x slower. Instead we can add a [`padding_side` parameter as there is for for Hugging Face tokenizers](9d6c0641c4/src/transformers/tokenization_utils_base.py (L1565)), which requires only a very small change in the C++ code.
Here are the benchmarks of the new implementation!
`float32`:

`bool`:

Code:
```python
from __future__ import annotations
import random
import time
from typing import Literal
import numpy as np
import torch
def pad_sequence_with_flips(
sequences: list[torch.Tensor],
batch_first: bool = False,
padding_value: int | float | bool = 0.0,
padding_side: Literal["left", "right"] | str = "left",
) -> torch.Tensor:
if padding_side == 'right':
padded_sequence = torch._C._nn.pad_sequence([t.flatten() for t in sequences], batch_first=batch_first, padding_value=padding_value)
elif padding_side=='left':
padded_sequence = torch._C._nn.pad_sequence([t.flatten().flip(0) for t in sequences], batch_first=batch_first, padding_value=padding_value) # pyright: ignore[reportArgumentType]
padded_sequence = padded_sequence.flip(int(batch_first))
else:
raise ValueError(f"padding_side should be either 'right' or 'left', but got {padding_side}")
return padded_sequence
sequence_lengths: list[int] = []
flip_left_pad_times: list[float] = []
flip_left_pad_times_std: list[float] = []
left_pad_times: list[float] = []
left_pad_times_std: list[float] = []
RUNS_PER_LOOP: int = 100
for i in range(1, 7):
sequence_length = i * int(1e6) // 6
sequence_lengths.append(sequence_length)
sequences = [torch.randint(0, 2, (random.randint(1, sequence_length),), dtype=torch.bool) for _ in range(64)]
inner_left_pad_times: list[float] = []
inner_right_pad_times: list[float] = []
inner_flip_left_pad_times: list[float] = []
inner_flip_right_pad_times: list[float] = []
for _ in range(RUNS_PER_LOOP):
start = time.perf_counter()
torch._C._nn.pad_sequence(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_left_pad_times.append(end - start)
start = time.perf_counter()
pad_sequence_with_flips(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_flip_left_pad_times.append(end - start)
left_pad_times.append(sum(inner_left_pad_times) / len(inner_left_pad_times))
left_pad_times_std.append(np.std(inner_left_pad_times))
flip_left_pad_times.append(sum(inner_flip_left_pad_times) / len(inner_flip_left_pad_times))
flip_left_pad_times_std.append(np.std(inner_flip_left_pad_times))
print(f"Sequence Length: {sequence_length}, Left Pad Time: {left_pad_times[-1]}, Left with Flips Pad Time: {flip_left_pad_times[-1]}")
import matplotlib.pyplot as plt
plt.plot(sequence_lengths, left_pad_times, label="new pad_sequence left")
plt.scatter(sequence_lengths, left_pad_times)
plt.errorbar(sequence_lengths, left_pad_times, yerr=left_pad_times_std, linestyle='None', marker='^')
plt.plot(sequence_lengths, flip_left_pad_times, label="old pad_sequence left (2 flips)")
plt.scatter(sequence_lengths, flip_left_pad_times)
plt.errorbar(sequence_lengths, flip_left_pad_times, yerr=flip_left_pad_times_std, linestyle='None', marker='^')
plt.xlabel("Sequence Length")
plt.ylabel("Time (s)")
plt.legend(loc="upper right")
# Sequence Length: 166666, Left Pad Time: 0.06147645162009212, Left with Flips Pad Time: 0.09842291727001794
# Sequence Length: 333333, Left Pad Time: 0.08933195920990329, Left with Flips Pad Time: 0.15597836187991562
# Sequence Length: 500000, Left Pad Time: 0.08863158334006585, Left with Flips Pad Time: 0.15224887342999863
# Sequence Length: 666666, Left Pad Time: 0.10524682551997103, Left with Flips Pad Time: 0.18177212480995877
# Sequence Length: 833333, Left Pad Time: 0.11801802741003485, Left with Flips Pad Time: 0.20821274195001024
# Sequence Length: 1000000, Left Pad Time: 0.131894061660023, Left with Flips Pad Time: 0.23223503091008751
```
Co-authored-by: mskoh52 <mskoh52@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131884
Approved by: https://github.com/ezyang
This PR makes libtorch behave the same as PyTorch when loading optimizer state from archive. With PyTorch, options of parameter groups are loaded from the archive, which is missing currently in libtorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125215
Approved by: https://github.com/janeyx99
Summary:
`-Wunused-exception-parameter` has identified an unused exception parameter. This diff removes it.
This:
```
try {
...
} catch (exception& e) {
// no use of e
}
```
should instead be written as
```
} catch (exception&) {
```
If the code compiles, this is safe to land.
Test Plan: Sandcastle
Reviewed By: palmje
Differential Revision: D55548497
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123056
Approved by: https://github.com/Skylion007