* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
We don't need to do a loop over all the args, kwargs in the
AdInplaceOrView key; we just need to bump the version on the args,
kwargs that are mutable.
On the benchmark mentioned in
https://github.com/pytorch/pytorch/issues/139494
this made the time go from
```
mutate2 = 61.72943878173828
no_mutate2 = 36.89440155029297
mutate = 236.3092498779297
no_mutate = 59.31964874267578
```
to
```
mutate2 = 47.976478576660156
no_mutate2 = 38.37468719482422
mutate = 71.21315002441406
no_mutate = 59.7432975769043
```
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139513
Approved by: https://github.com/bdhirsh
ghstack dependencies: #139509
This PR changes real_tensor_prop to also infer fake kernels when the
operator doesn't have it.
We infer the fake output to be of the same properties as the real
output, with unbacked symints in the sizes and some stride order.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139213
Approved by: https://github.com/pianpwk
ghstack dependencies: #139212
When we see a custom op:
- check that its mutation annotations are correct
- check that its aliasing constraints matches our constraints for custom
ops.
Otherwise, there may be undefined behavior.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139212
Approved by: https://github.com/angelayi
Summary:
* Fixed real tensor tracing w/ torchbind objs by passing the cloned tensor obj. For now I just catch the exception and have an error message if the `_clone` fails, but up for discussion on what to do here
* Separate question, should we require people to set up FakeScriptObjects and stuff for draft mode?
* Prevent side effects from happening when we do the first pass of custom ops profiling by cloning/copying everything. Not sure if deepcopying the model will succeed in all cases... But also I guess this path can be removed once custom ops profiling turns into one pass.
Test Plan: `buck2 run @//mode/dev-nosan //scripts/angelayi/draft_export:test_draft_export`
Reviewed By: ydwu4
Differential Revision: D64124825
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138797
Approved by: https://github.com/ydwu4
if the function is
```func(a, b, c) ```
and is called as
```func(a=1, b=.., c=..)```
before this change we do not iterate on the a, b, c, since those appear in kwargs this diff fix that issue.
This function is used in _inductor/ir.py to iterate over custom op arguments and when a custom pass does changes
and pass arguments as kwargs, we do not process them.
```
for info, arg in torch._library.utils.zip_schema(schema, args, kwargs):
handle_aliasing_and_mutation(info, arg)
```
Fix https://github.com/pytorch/pytorch/issues/137057
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137311
Approved by: https://github.com/zou3519
Add a way of generating a FunctionSchema from example values because hop's schema varies even for the same hop.
We didn't use torch._C.FunctionSchema because we cannot construct the classes directly (e.g. "__init__" cannot be used for torch._C.FunctionSchema). Also extending the Basic types in c++ seems not that easy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133521
Approved by: https://github.com/zou3519
We promise the user that these custom ops (and their kernels) are black
boxes w.r.t. torch.compile. Unfortunately Dynamo can turn itself back
on in the implementation of the custom operator, so we force it off by
disabling Dynamo
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133125
Approved by: https://github.com/ezyang
The capture_triton decorator returns a function that goes through the
triton kernel wrapper HOP. This is useful for make_fx tracing and
non-strict export. However, the HOP dispatch is slow (~1ms) and not
necessary in certain situations.
This PR skips going through the HOP dispatch for any
capture_triton-wrapped triton kernels that are registered as
implementations to a `@triton_op` custom operator. We do this by
creating a new thread-local flag that controls if the
capture_trition-wrapped triton kernel goes through HOP dispatch or not.
Test Plan:
- new test and existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132822
Approved by: https://github.com/SherlockNoMad
Summary:
Skip the warning if the fake script object doesn't implement a fake method for:
1. __obj_flatten__: for real script object only.
2. __set_state__ and __get_state__ for serialization. Don't expect it to be used during tracing.
Test Plan: Existing tests.
Reviewed By: angelayi
Differential Revision: D60478460
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132306
Approved by: https://github.com/angelayi
Made the following changes:
- mutates_args is now keyword-only and mandatory. This is to align with
torch.library.custom_op (which makes it mandatory because it's easy to
miss)
- op_name is now keyword-only. This helps the readability of the API
- updated all usages of infer_schema
This change is not BC-breaking because we introduced
torch.library.infer_schema a couple of days ago.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130705
Approved by: https://github.com/yushangdi
ghstack dependencies: #131777
Fixes#130284Fixes#130653
- Add `torch.library.register_vmap` to custom ops
- Add `register_vmap` for operators in ops in custom_op_db.
- Make `torch.autograd.Function` support kwarg-only kwargs for vmap
- test operators in op_db with `tests/test_vmap`.
- change `test_vmap` to allow custom `out_dim` and allow "None" in `out_dim` when testing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130589
Approved by: https://github.com/zou3519
Fixes#130284Fixes#130653
- Add `torch.library.register_vmap` to custom ops
- Add `register_vmap` for operators in ops in custom_op_db.
- Make `torch.autograd.Function` support kwarg-only kwargs for vmap
- test operators in op_db with `tests/test_vmap`.
- change `test_vmap` to allow custom `out_dim` and allow "None" in `out_dim` when testing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130589
Approved by: https://github.com/zou3519
Made the following changes:
- mutates_args is now keyword-only and mandatory. This is to align with
torch.library.custom_op (which makes it mandatory because it's easy to
miss)
- op_name is now keyword-only. This helps the readability of the API
- updated all usages of infer_schema
This change is not BC-breaking because we introduced
torch.library.infer_schema a couple of days ago.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130705
Approved by: https://github.com/yushangdi
This is the initial version of an API to create custom operators whose
implementations are backed by triton kernels. While user-defined triton
kernels work out-of-the-box with triton kernels, you may wish to
construct a custom operator if you need to compose with other PyTorch
subsystems, like Tensor subclasses or vmap.
I'm hoping to get design feedback on this and ship it so that we can
begin experimenting with customers.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130637
Approved by: https://github.com/albanD
Sometimes, it could be difficult to write a fake class e.g. when the original implementation is using some third-party libraries or users are certain that the class is safe to trace with the real object.
This PR allows user to specify their intention by implementing a "safe_to_trace_with_real_obj" method on their script class.
Test Plan:
`pytest test/export/test_torchbind.py -k safe`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129586
Approved by: https://github.com/zou3519
We add torch.library.Library._register_torch_dispatch_rule. Here, a user
can provide us a specific rule to run for a specific
(torch_dispatch_class, operator) pair. The motivation is that a user
might want to extend a subclass/mode but may not have access to the
source code of the subclass/mode.
I'll make this public in a follow-up PR if we think the approach and API
is good.
Keep in mind that many subclasses will likely deliver their own open
registration solution (DTensor has register_sharding_prop_rule and NJT
has register_jagged_op); _register_torch_dispatch_rule is meant as a
catch-all open registration mechanism for when the subclass hasn't
provided anything more specific.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130064
Approved by: https://github.com/albanD
We add torch.library.Library._register_torch_dispatch_rule. Here, a user
can provide us a specific rule to run for a specific
(torch_dispatch_class, operator) pair. The motivation is that a user
might want to extend a subclass/mode but may not have access to the
source code of the subclass/mode.
I'll make this public in a follow-up PR if we think the approach and API
is good.
Keep in mind that many subclasses will likely deliver their own open
registration solution (DTensor has register_sharding_prop_rule and NJT
has register_jagged_op); _register_torch_dispatch_rule is meant as a
catch-all open registration mechanism for when the subclass hasn't
provided anything more specific.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130064
Approved by: https://github.com/albanD
We add torch.library.Library._register_torch_dispatch_rule. Here, a user
can provide us a specific rule to run for a specific
(torch_dispatch_class, operator) pair. The motivation is that a user
might want to extend a subclass/mode but may not have access to the
source code of the subclass/mode.
I'll make this public in a follow-up PR if we think the approach and API
is good.
Keep in mind that many subclasses will likely deliver their own open
registration solution (DTensor has register_sharding_prop_rule and NJT
has register_jagged_op); _register_torch_dispatch_rule is meant as a
catch-all open registration mechanism for when the subclass hasn't
provided anything more specific.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130064
Approved by: https://github.com/albanD
Fixes#129389
If a user registers a device-specific implementation for an operator that accepts no Tensors, then we require the operator to have a "device: torch.device argument"
We switch on the device argument to select the correct backend to dispatch to.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129978
Approved by: https://github.com/zou3519
I run into this a lot. I can imagine that it would look opaque to users,
so made it more friendly
Old error message: "ValueError: infer_schema(func): Return has unsupported type <class 'inspect._empty'>."
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129896
Approved by: https://github.com/yushangdi